已知銳角三角形的邊長分別為1、3、,則的取值范圍是(   )
A.B.C.D.
B
解:因?yàn)殇J角三角形的邊長分別為1、3、,那么可知只要最大角為銳角即可,利用余弦定理可知那么參數(shù)a的范圍是,選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,是底部不可到達(dá)的一個(gè)塔型建筑物,為塔的最高點(diǎn).現(xiàn)需在對岸測出塔高,甲、乙兩同學(xué)各提出了一種測量方法,甲同學(xué)的方法是:選與塔底在同一水平面內(nèi)的一條基線,使三點(diǎn)不在同一條直線上,測出的大。ǚ謩e用表示測得的數(shù)據(jù))以及間的距離(用表示測得的數(shù)據(jù)),另外需在點(diǎn)測得塔頂的仰角(用表示測量的數(shù)據(jù)),就可以求得塔高.乙同學(xué)的方法是:選一條水平基線,使三點(diǎn)在同一條直線上.在處分別測得塔頂的仰角(分別用表示測得的數(shù)據(jù))以及間的距離(用表示測得的數(shù)據(jù)),就可以求得塔高

請從甲或乙的想法中選出一種測量方法,寫出你的選擇并按如下要求完成測量計(jì)算:①畫出測量示意圖;②用所敘述的相應(yīng)字母表示測量數(shù)據(jù),畫圖時(shí)按順時(shí)針方向標(biāo)注,按從左到右的方向標(biāo)注;③求塔高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),
(Ⅰ)求函數(shù)的最大值和最小正周期;
(Ⅱ)設(shè)的內(nèi)角的對邊分別,,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

. (本小題滿分10分)
設(shè)的內(nèi)角A、B、C所對的邊分別為、b、c,已知
(Ⅰ)求的周長;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,已知邊上的中線,則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,

一艘船以20千米/小時(shí)的速度向正北航行,船在A處看見燈塔B在船的東北方向,1小時(shí)后船在C處看見燈塔B在船的北偏東75°的方向上,這時(shí)船與燈塔的距離BC等于__________千米。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知:△ABC中角A、B、C所對的邊分別為
.
(1)求角C的大;
(2)若成等差數(shù)列,且,求邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,海平面上的甲船位于中心O的南偏西30°,與O相距15海里的C處.現(xiàn)甲船以35海里/小時(shí)的速度沿直線CB去營救位于中心O正東方向25海里的B處的乙船,則甲船到達(dá)B處需要的時(shí)間為       
小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

ABC中,,,面積為,那么的長度為         

查看答案和解析>>

同步練習(xí)冊答案