【題目】已知二次函數(shù)f(x)滿足f(x)=f(﹣4﹣x),f(0)=3,若是f(x)的兩個零點(diǎn),且.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若x>0,求g(x)=的最大值.
【答案】(1) f(x)=x2+4x+3.(2)見解析.
【解析】
(Ⅰ)根據(jù)題意分析出x1=﹣3,x2=﹣1,設(shè)f(x)=a(x+3)(x+1)(a≠0),再利用f(0)=3a=3得到a的值即得f(x)的解析式.( Ⅱ)先化簡得,再利用基本不等式求它的最大值.
(Ⅰ)∵f(x)=f(﹣4﹣x),x1,x2是f(x)的兩個零點(diǎn),且|x1﹣x2|=2.
∴f(x)的對稱軸為:x=﹣2,可得x1=﹣3,x2=﹣1
設(shè)f(x)=a(x+3)(x+1)(a≠0)
由f(0)=3a=3得a=1,∴f(x)=x2+4x+3.
(Ⅱ)∵g(x)==1﹣,
當(dāng)且僅當(dāng)即x=時取等.
∴g(x)的最大值是1﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù)(=1,2,…,6),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為常數(shù)).
(1)求不等式的解集;
(2)當(dāng)a>0時,若對于任意的 [3,4],恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(sinx,cosx),=(sin(x﹣),sinx),函數(shù)f(x)=2,g(x)=f().
(1)求f(x)在[,π]上的最值,并求出相應(yīng)的x的值;
(2)計算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費(fèi)每超過元(含元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.方案一:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,一次性摸出個球,其中獎規(guī)則為:若摸到個紅球,享受免單優(yōu)惠;若摸出個紅球則打折,若摸出個紅球,則打折;若沒摸出紅球,則不打折.方案二:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,有放回每次摸取球,連摸次,每摸到次紅球,立減元.
(1)若兩個顧客均分別消費(fèi)了元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),直線,,,(為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.
(1)是否存在實(shí)數(shù),滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在直線2x-3y+5=0上移動,點(diǎn)P為連接M(4,-3)和點(diǎn)A的線段的中點(diǎn),則點(diǎn)P的軌跡方程為
A. 2x-3y-6=0 B. 2x-3y+2=0 C. 2x-3y+11=0 D. 2x+3y-6=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com