【題目】設(shè)直線與拋物線交于,兩點,與橢圓交于,兩點,直線,,,為坐標原點)的斜率分別為,,,若.

(1)是否存在實數(shù),滿足,并說明理由;

(2)求面積的最大值.

【答案】(1)答案見解析;(2).

【解析】

設(shè)直線方程為,,,聯(lián)立直線方程與拋物線方程可得,,由直線垂直的充分必要條件可得.聯(lián)立直線方程與橢圓方程可得,.

(1)由斜率公式計算可得.

(2)由弦長公式可得.且點到直線的距離,換元后結(jié)合均值不等式的結(jié)論可知面積的最大值為.

設(shè)直線方程為,,,

聯(lián)立,

,

,,.

,所以,得.

聯(lián)立,得

,

所以,.

,得.

(1)因為,,

所以.

(2)根據(jù)弦長公式,得:

.

根據(jù)點到直線的距離公式,得

所以,

設(shè),則,

所以當,即時,有最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某校擬派一名跳高運動員參加一項校際比賽,對甲、乙兩名跳高運動員進行了8次選拔比賽,他們的成績(單位:m)如下:

甲:1.70,1.65,1.68,1.691.72,1.73,1.68,1.67;

乙:1.601.73,1.721.61,1.621.71,1.701.75.

經(jīng)預測,跳高1.65m就很可能獲得冠軍.該校為了獲取冠軍,可能選哪位選手參賽?若預測跳高1.70m方可獲得冠軍呢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(1)寫出直線l普通方程和曲線C的直角坐標方程;

(2)過點且與直線平行的直線, 兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(x)=f(﹣4﹣x),f(0)=3,若是f(x)的兩個零點,且

(Ⅰ)求f(x)的解析式;

(Ⅱ)若x>0,求g(x)=的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了整頓道路交通秩序,某地考慮對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機抽取200人進行調(diào)查,當不處罰時,有80人會闖紅燈,處罰時,得到如下數(shù)據(jù):

處罰金額(單位:元)

5

10

15

20

會闖紅燈的人數(shù)

50

40

20

0

若用表中數(shù)據(jù)所得頻率代替概率.

(1)當處罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?

(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其它市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)時恒成立,求實數(shù)的取值范圍;

(3)若函數(shù),求證:函數(shù)的極大值小于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求證:平面ABCD;

(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

溫差

患感冒人數(shù)

8

11

14

20

23

26

其中,.

(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合的關(guān)系;

(Ⅱ)建立關(guān)于的回歸方程(精確到),預測當晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))

參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是 ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系上一動點到點的距離是點到點的距離的2倍。

(1)求點的軌跡方程;

(2)若點與點關(guān)于點對稱,求,兩點間距離的最大值。

(3)若過點的直線與點的軌跡相交于、兩點,,則是否存在直線,使 取得最大值,若存在,求出此時的方程,若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案