某工科院校對A,B兩個專業(yè)的男女生人數(shù)進行調查,得到如下的列聯(lián)表:
專業(yè)A 專業(yè)B 總計
女生 12 4 16
男生 38 46 84
總計 50 50 100
能否在犯錯誤的概率不超過0.05的前提下,認為工科院校中“性別”與“專業(yè)”有關系呢?
注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.25 0.15 0.10 0.05 0.025
k0 1.323 2.072 2.706 3.841 5.024
考點:獨立性檢驗的應用
專題:計算題,概率與統(tǒng)計
分析:根據(jù)列聯(lián)表中的數(shù)據(jù)求出K2,與臨界值比較,即可得到結論.
解答: 解:(Ⅰ)根據(jù)列聯(lián)表中的數(shù)據(jù)K2=
100×(12×46-4×38)2
16×84×50×50
≈4.762>3.841,
∴能在犯錯誤的概率不超過0.05的前提下,認為工科院校中“性別”與“專業(yè)”有關系.
點評:本題考查獨立性檢驗,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
16
-
y2
9
=1的左右焦點,P是雙曲線右支上一點,M是PF1的中點,若|OM|=1,則|PF1|是( 。
A、10B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn為數(shù)列{an}的前n項和,對任意的n∈N,都有Sn=(m+1)-man(m為常數(shù),且m>0).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設數(shù)列{an}的公比q與m函數(shù)關系為q=f(m),數(shù)列{bn}滿足b1=2a1,點(bn-1,bn)落在q=f(m)上(n≥2,n∈N,求數(shù)列{bn}的通項公式;
(3)在滿足(2)的條件下,求數(shù)列{
2n+1
bn
}的前n項和Tn,使Tn≤n•2n+2+λ恒成立時,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2=1在矩陣M=
a0
0b
(a>0,b>0)對應的變換作用下得到橢圓x2+4y2=1,求矩陣M的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}首項為a1,公比為q,求:
(1)該數(shù)列的前n項和Sn
(2)若q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)所給的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?可能用到的公式和數(shù)據(jù)K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
臨界值確定表
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,關于x的一元二次方程7x2-(a+13)x+a2-a-2=0有兩實數(shù)根x1,x2,且0<x1<1<x2<2.
(1)求a的取值范圍;
(2)比較a3與a2-a+1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
m-2x
2x+1
是奇函數(shù).
(Ⅰ)求m的值;
(Ⅱ)用定義證明f(x)在R上為減函數(shù);
(Ⅲ)若對于任意的實數(shù)t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-x
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若不等式af(x)≥x-
1
2
x2
在x∈(0,+∞)內恒成立,求實數(shù)a的取值范圍;
(Ⅲ)n∈N*,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步練習冊答案