【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性及極值;
(Ⅱ)若不等式在內(nèi)恒成立,求證:.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】試題分析:(1)函數(shù)求導(dǎo)得,討論和演技單調(diào)性及極值即可;
(2)當(dāng)時(shí),在內(nèi)單調(diào)遞增,可知在內(nèi)不恒成立,當(dāng)時(shí), ,即,所以.令,進(jìn)而通過(guò)求導(dǎo)即可得最值.
試題解析:
(1)由題意得.
當(dāng),即時(shí),,在內(nèi)單調(diào)遞增,沒(méi)有極值.
當(dāng),即,
令,得,
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增,
故當(dāng)時(shí),取得最小值,無(wú)極大值.
綜上所述,當(dāng)時(shí),在內(nèi)單調(diào)遞增,沒(méi)有極值;
當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,的極小值為,無(wú)極大值.
(2)由(1),知當(dāng)時(shí),在內(nèi)單調(diào)遞增,
當(dāng)時(shí),成立.
當(dāng)時(shí),令為和中較小的數(shù),
所以,且.
則,.
所以,
與恒成立矛盾,應(yīng)舍去.
當(dāng)時(shí), ,
即,
所以.
令,
則.
令,得,
令,得,
故在區(qū)間內(nèi)單調(diào)遞增,
在區(qū)間內(nèi)單調(diào)遞減.
故,
即當(dāng)時(shí),.
所以.
所以.
而,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣ .
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(duì)(t,P),點(diǎn)(t,P)落在圖中的兩條線段上(如圖).該股票在30天內(nèi)(包括第30天)的日交易量Q(萬(wàn)股)與時(shí)間t(天)的函數(shù)關(guān)系式為Q=40﹣t(0≤t≤30且t∈N).
(1)根據(jù)提供的圖象,求出該種股票每股的交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)用y(萬(wàn)元)表示該股票日交易額(日交易額=日交易量×每股的交易價(jià)格),寫(xiě)出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在五面體中, , , ,平面平面.
(1)證明:直線平面;
(2)已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求證:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若不等式對(duì)任意恒成立.(i)求實(shí)數(shù)的取值范圍;(ii)試比較與的大小,并給出證明(為自然對(duì)數(shù)的底數(shù), ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com