【題目】已知為偶函數(shù),當(dāng)時, , 滿足的實(shí)數(shù)的個數(shù)為( )

A.2
B.4
C.6
D.8

【答案】D
【解析】因?yàn)?/span>為偶函數(shù),當(dāng)時,.所以函數(shù)的解析式為作出圖像如圖所示. .由于函數(shù)是關(guān)于y軸對稱,考慮研究x>0部分的圖像.當(dāng)時..因?yàn)?/span>.所以有四個不同的值.因?yàn)?/span> , 所以不存在.所以有四個值.有對稱性可得在x<0部分也有一個x的值符合.所以對應(yīng)有四個值.故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解復(fù)合函數(shù)單調(diào)性的判斷方法(復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”),還要掌握函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的方程 正實(shí)數(shù)解有且僅有一個,那么實(shí)數(shù)a的取值范圍為(
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圖甲中的圖象對應(yīng)的函數(shù)y=f(x),則圖乙中的圖象對應(yīng)的函數(shù)在下列給出的四式中只可能是( 。

A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各等式(i為虛數(shù)單位):

(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;

(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;

(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;

(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.

f(x)=cos x+isin x

猜想出一個用f (x)表示的反映一般規(guī)律的等式,并證明其正確性;

查看答案和解析>>

同步練習(xí)冊答案