【題目】某校對高三年級的學生進行體檢,現(xiàn)將高三男生的體重(單位:㎏)數(shù)據(jù)進行整理后分成五組,并繪制頻率分布直方圖(如圖所示).根據(jù)一般標準,高三男生的體重超過65㎏屬于偏胖,低于55㎏屬于偏瘦,已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻率數(shù)為400,則該校高三年級的男生總數(shù)和體重正常的頻率分別為(

A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60

【答案】C
【解析】解:由題知第二小組的頻率為1﹣(0.25+0.20+0.10+0.05)=0.40,
又頻數(shù)為400,故總?cè)藬?shù)為1000,體重正常的頻率為0.4+0.2=0.60.
故選:C
【考點精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是(填序號)
①命題“x1 , x2∈M,x1≠x2 , 有[f(x1)﹣f(x2)](x2﹣x1)>0”的否定是“x1 , x2M,x1≠x2 , 有[f(x1)﹣f(x2)](x2﹣x1)≤0”;
②若一個命題的逆命題為真命題,則它的否命題也一定為真命題;
③已知p:x2+2x﹣3>0, ,若命題(q)∧p為真命題,則x的取值范圍是(﹣∞,﹣3)∪(1,2)∪[3,+∞);
④“x≠3”是“|x|≠3”成立的充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+ 與橢圓C交于A,B兩點,是否存在實數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={(x,y)|f(x,y)=0},若對任意P1(x1 , y1)∈M,均不存在P2(x2 , y2)∈M使得x1x2+y1y2=0成立,則稱集合M為“好集合”,下列集合為“好集合”的是( 。
A.M={(x,y)|y﹣lnx=0}
B.M={(x,y)|y﹣x2﹣1=0}
C.M={(x,y)|(x﹣2)2+y2﹣2=0}
D.M={(x,y)|x2﹣2y2﹣1=0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在甲、乙兩個盒子中分別裝有標號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個小球被取出的可能性相等.
(Ⅰ)求取出的兩個球上標號為相鄰整數(shù)的概率;
(Ⅱ)求取出的兩個球上標號之和能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設(shè)cn=a ,則數(shù)列{cn}的前10項和等于(
A.55
B.70
C.85
D.100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】口袋中裝有一些大小相同的紅球和黑球,從中取出2個球.兩個球都是紅球的概率是 ,都是黑球的概率是 ,則取出的2個球中恰好一個紅球一個黑球的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案