設(shè)x,y∈R,則“xy>0”是“|x+y|=|x|+|y|”成立的(  )
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既不充分又不必要條件
若“xy>0”,則x,y同號(hào),則“|x+y|=|x|+|y|”成立
即“xy>0”是“|x+y|=|x|+|y|”成立的充分條件
但“|x+y|=|x|+|y|”成立時(shí),x,y不異號(hào),“xy≥0”,“xy>0”不一定成立,
即“xy>0”是“|x+y|=|x|+|y|”成立的不必要條件
即“xy>0”是“|x+y|=|x|+|y|”成立的充分不必要條件
故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x≥2且y≥1”是“x2+y2≥4”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x=0”是“復(fù)數(shù)x+yi為純虛數(shù)”的( 。l件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x+y-4<0”是“x<0且y<0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)設(shè)x,y∈R,則“x≥1且y≥2”是“x+y≥3”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②設(shè)x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必過點(diǎn)(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確結(jié)論的序號(hào)是
②③
②③
.(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊答案