設(shè)x,y∈R,則“x≥2且y≥1”是“x2+y2≥4”的( 。
分析:利用充分條件和必要條件的定義進(jìn)行判斷即可.
解答:解:若x≥2且y≥1,則x2≥4,y2≥1,所以x2+y2≥5,所以x2+y2≥4成立.
若x2+y2≥4,不妨設(shè)x=-3,y=0.滿足x2+y2≥4,但x≥2且y≥1不成立.
所以“x≥2且y≥1”是“x2+y2≥4”的充分不必要條件.
故選A.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,要求熟練掌握利用充分條件和必要條件的定義進(jìn)行判斷的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,則“x=0”是“復(fù)數(shù)x+yi為純虛數(shù)”的( 。l件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,則“x+y-4<0”是“x<0且y<0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)設(shè)x,y∈R,則“x≥1且y≥2”是“x+y≥3”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②設(shè)x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必過點(diǎn)(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確結(jié)論的序號(hào)是
②③
②③
.(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案