【題目】銀川一中從高二年級學生中隨機抽取40名學生作為樣本,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:后得到如圖的頻率分布直方圖.
(1)求圖中實數(shù)的值;
(2)試估計我校高二年級在這次數(shù)學考試的平均分;
(3)若從樣本中數(shù)學成績在與兩個分數(shù)段內的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.
【答案】(1);(2);(3).
【解析】
(1)由頻率分布直方圖中頻率之和為1 ,能求出;(2) 每個矩形的中點橫坐標與該矩形的縱坐標相乘后求和可得平均值;(3)由頻率分布直方圖,得數(shù)學成績在內的學生人數(shù)為,數(shù)學成績在內的學生人數(shù)為這4人,如果這兩名學生的數(shù)學成績都在或都在內,則這兩名學生的數(shù)學成績之差的絕對值不大于10,利用列舉法結合古典概型概率公式,可求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.
(1)根據數(shù)據的頻率之和為,得,
∴;
(2).
(3)數(shù)學成績在的學生人數(shù):人,
數(shù)學成績在的學生人數(shù):人,
設數(shù)學成績在的學生為,;
數(shù)學成績在的學生為,,,;
從名學生中選兩名學生的結果有:,,,,,,,,,,,,,,.共種;
其中兩名學生的數(shù)學成績之差的絕對值不大于的情況有:,,,,,,共種;
∴抽取的兩名學生的數(shù)學成績之差的絕對值不大于的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(1)求證:AB∥EF;
(2)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從裝有兩個紅球和兩個黑球的口袋內任取兩個球,那么互斥而不對立的兩個事件是( )
A. “至少有一個黑球”與“都是紅球”
B. “至少有一個黑球”與“至少有一個紅球”
C. “至少有一個黑球”與“都是黑球”
D. “恰有一個黑球”與“恰有兩個黑球”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是圓:上任意一點,點與點關于原點對稱,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|cosx|sinx+sin2x,給出下列四個命題:
①函數(shù)f(x)的圖象關于直線 對稱;
②函數(shù)f(x)在區(qū)間 上單調遞增;
③函數(shù)f(x)的最小正周期為π;
④函數(shù)f(x)的值域為[﹣2,2].
其中真命題的序號是 . (將你認為真命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.
(3)探討函數(shù)F(x)=lnx﹣ + 是否存在零點?若存在,求出函數(shù)F(x)的零點,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某學校進行的一次語文與歷史成績中,隨機抽取了25位考生的成績進行分析,25位考生的語文成績已經統(tǒng)計在莖葉圖中,歷史成績如下:
(Ⅰ)請根據數(shù)據在莖葉圖中完成歷史成績統(tǒng)計;
(Ⅱ)請根據數(shù)據完成語文成績的頻數(shù)分布表及語文成績的頻率分布直方圖;
語文成績的頻數(shù)分布表:
語文成績分組 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:x0∈[0,2],log2(x+2)<2m;命題q:關于x的方程3x2﹣2x+m2=0有兩個相異實數(shù)根.
(1)若(¬p)∧q為真命題,求實數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com