【題目】在直角坐標(biāo)系中,曲線,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)射線的極坐標(biāo)方程為,若分別與交于異于極點(diǎn)的兩點(diǎn),求的最大值.
【答案】(1)的極坐標(biāo)方程是,的極坐標(biāo)方程是. (2)
【解析】
(1)利用將的直角坐標(biāo)方程化為極坐標(biāo)方程;先把的參數(shù)方程化為普通方程,再化為極坐標(biāo)方程;
(2)分別聯(lián)立曲線與的極坐標(biāo)方程與,即可求得,,再利用二次函數(shù)的性質(zhì)求得的最大值,進(jìn)而求解.
解:(1)因?yàn)?/span>,
所以可化為,
整理得,
(為參數(shù)),則(為參數(shù)),化為普通方程為,則極坐標(biāo)方程為,即.
所以的極坐標(biāo)方程是,的極坐標(biāo)方程是.
(2)由(1)知,
聯(lián)立可得,
聯(lián)立可得,
所以,
當(dāng)時(shí),最大值為,所以的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且x=0是f(x)的極值點(diǎn).
(1)求f(x)的最小值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式ex<bx+f(x)在(0,+∞)上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】七巧板是中國(guó)古代勞動(dòng)人民的發(fā)明,其歷史至少可以追溯到公元前一世紀(jì),后清陸以湉《冷廬雜識(shí)》卷一中寫(xiě)道“近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余”在18世紀(jì),七巧板流傳到了國(guó)外,被譽(yù)為“東方魔板”,至今英國(guó)劍橋大學(xué)的圖書(shū)館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機(jī)取一點(diǎn),那么此點(diǎn)取自陰影部分的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),、分別為橢圓C的左、右焦點(diǎn)且
(1)求橢圓C的方程;
(2)直線平行于OP(O為原點(diǎn)),且與橢圓C交于兩點(diǎn)A、B,與直線x=2交于點(diǎn)M(M介于A、B兩點(diǎn)之間).
(I)當(dāng)△PAB面積最大時(shí),求的方程;
(II)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研團(tuán)隊(duì)對(duì)例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.根據(jù)以上數(shù)據(jù)繪制列聯(lián)表,如下:
吸煙人數(shù) | 非吸煙人數(shù) | 總計(jì) | |
重癥人數(shù) | 30 | 120 | 150 |
輕癥人數(shù) | 100 | 800 | 900 |
總計(jì) | 130 | 920 | 1050 |
(1)根據(jù)列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為新冠肺炎重癥和吸煙有關(guān)?
(2)已知每例重癥患者平均治療費(fèi)用約為萬(wàn)元,每例輕癥患者平均治療費(fèi)用約為萬(wàn)元.現(xiàn)有吸煙確診患者20人,記這名患者的治療費(fèi)用總和為,求.
附:
≥ | |||
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)軸正半軸上一點(diǎn)做直線與拋物線交于,,兩點(diǎn),且滿足,過(guò)定點(diǎn)與點(diǎn)做直線與拋物線交于另一點(diǎn),過(guò)點(diǎn)與點(diǎn)做直線與拋物線交于另一點(diǎn).設(shè)三角形的面積為,三角形的面積為.
(1)求正實(shí)數(shù)的取值范圍;
(2)連接,兩點(diǎn),設(shè)直線的斜率為;
(。┊(dāng)時(shí),直線在軸的縱截距范圍為,則求的取值范圍;
(ⅱ)當(dāng)實(shí)數(shù)在(1)取到的范圍內(nèi)取值時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在公比大于0的等比數(shù)列{an}中,已知a3a5=a4,且a2,3a4,a3成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)已知Sn=a1a2…an,試問(wèn)當(dāng)n為何值時(shí),Sn取得最大值,并求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知口袋里裝有4個(gè)大小相同的小球,其中兩個(gè)標(biāo)有數(shù)字1,兩個(gè)標(biāo)有數(shù)字2.
(1)從口袋里任意取一球,求取到標(biāo)有數(shù)字2的球的概率;
(2)第一次從口袋里任意取一球,放回口袋里后第二次再任意取一球,記第一次與第二次取到小球上的數(shù)字之和為.當(dāng)為何值時(shí),其發(fā)生的概率最大?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)A是直線上的動(dòng)點(diǎn),過(guò)作直線,,線段的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)若點(diǎn),是直線上兩個(gè)不同的點(diǎn),且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com