【題目】已知函數(shù),,其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有≥成立,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】
試題本題主要考查利用導數(shù)求函數(shù)的極值、單調(diào)區(qū)間、最值等基礎(chǔ)知識及分類討論思想,也考查了學生分析問題解決問題的能力及計算能力.第一問先對函數(shù)進行求導,再把極值點代入導函數(shù)求得實數(shù)a的值;第二問對任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等價于對任意的x1,x2∈[1,e],都有f(x)min≥g(x)max,利用導數(shù)分別判斷函數(shù)f (x)、g(x)的單調(diào)性并求其在定義域范圍內(nèi)的最值,判斷單調(diào)性時可對實數(shù)a進行分類討論,則可求得實數(shù)a的取值范圍.
試題解析:(1)∵h(x)=2x++ln x,其定義域為(0,+∞),∴h′(x)=2-+,
∵x=1是函數(shù)h(x)的極值點,∴h′(1)=0,即3-a2=0.
∵a>0,∴a=.
經(jīng)檢驗當a=時,x=1是函數(shù)h(x)的極值點,∴a=.
(2)對任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等價于對任意的x1,x2∈[1,e],都有f(x)min≥g(x)max.
當x∈[1,e]時,g′(x)=1+>0.
∴函數(shù)g(x)=x+ln x在[1,e]上是增函數(shù),∴g(x)max=g(e)=e+1.
∵f′(x)=1-=,且x∈[1,e],a>0.
①當0<a<1且x∈[1,e]時,f′(x)=>0,
∴函數(shù)f(x)=x+在[1,e]上是增函數(shù),∴f(x)min=f(1)=1+a2.
由1+a2≥e+1,得a≥,又0<a<1,∴a不合題意.
②當1≤a≤e時,
若1≤x≤a,則f′(x)=<0,
若a<x≤e,則f′(x)=>0.
∴函數(shù)f(x)=x+在[1,a)上是減函數(shù),在(a,e]上是增函數(shù).
∴f(x)min=f(a)=2a.
由2a≥e+1,得a≥. 又1≤a≤e,∴≤a≤e.
③當a>e且x∈[1,e]時f′(x)=<0,
函數(shù)f(x)=x+在[1,e]上是減函數(shù).∴f(x)min=f(e)=e+.
由e+≥e+1,得a≥,又a>e,∴a>e.
綜上所述,a的取值范圍為[,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分15分)已知中心在原點O,焦點在x軸上,離心率為的橢圓過點(,).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)不過原點O的直線l與該橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時, 是單調(diào)函數(shù),則滿足的所有之積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a為實數(shù),函數(shù),
(1)若,求不等式的解集;
(2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;
(3)寫出函數(shù)在R上的零點個數(shù)(不必寫出過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
已知動點都在曲線(為參數(shù),是與無關(guān)的正常數(shù))上,對應(yīng)參數(shù)分別為與,為的中點.
(1)求的軌跡的參數(shù)方程;
(2)作一個伸壓變換:,求出動點點的參數(shù)方程,并判斷動點的軌跡能否過點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當時, , 單調(diào)遞減,且;
當時, , 單調(diào)遞增;且,
所以在上當單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù),對于任意都有成立,當,且時,都有.給出以下三個命題:
①直線是函數(shù)圖像的一條對稱軸;
②函數(shù)在區(qū)間上為增函數(shù);
③函數(shù)在區(qū)間上有五個零點.
問:以上命題中正確的個數(shù)有( ).
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某市統(tǒng)考的學生數(shù)學考試卷中隨機抽查100份數(shù)學試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分別直方圖.
(1)求這100份數(shù)學試卷成績的中位數(shù);
(2)從總分在和的試卷中隨機抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,為了測量某一隧道兩側(cè)A、B兩地間的距離,某同學首先選定了不在直線AB上的一點C(中∠A、∠B、∠C所對的邊分別為a、b、c),然后確定測量方案并測出相關(guān)數(shù)據(jù),進行計算.現(xiàn)給出如下四種測量方案;①測量∠A,∠C,b;②測量∠A,∠B,∠C;③測量a,b,∠C;④測量∠A,∠B,a,則一定能確定A、B間距離的所有方案的序號為( )
A.①③B.①③④C.②③④D.①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com