(2012•昌平區(qū)一模)若某空間幾何體的三視圖如圖所示,則該幾何體的體積是(  )
分析:由三視圖可知該幾何體為是一平放的直三棱柱,左視圖為其底面,高為2.利用柱體體積公式計算即可.
解答:解:由三視圖可知該幾何體為是一平放的直三棱柱,左視圖為其底面,高為2
V=Sh=
1
2
×2×2×2=4.
故選B.
點評:本題考查三視圖求幾何體的體積,考查計算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)一圓形紙片的圓心為點O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點.把紙片折疊使點A與Q重合,然后展平紙片,折痕與OA交于P點.當(dāng)點A運動時點P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)某類產(chǎn)品按工藝共分10個檔次,最低檔次產(chǎn)品每件利潤為8元.每提高一個檔次,每件利潤增加2元.用同樣工時,可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤最大時生產(chǎn)產(chǎn)品的檔次是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)已知函數(shù)f(x)=lnx+
1x
+ax,x∈(0,+∞)
(a為實常數(shù)).
(1)當(dāng)a=0時,求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在[2,+∞)上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點A,PA=AB=2,點M,N分別是PD,PB的中點.
(I)求證:PB∥平面ACM;
(II)求證:MN⊥平面PAC;
(III)求四面體A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=7,則|
b
|=
2
6
2
6

查看答案和解析>>

同步練習(xí)冊答案