(2012•昌平區(qū)一模)如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點(diǎn)A,PA=AB=2,點(diǎn)M,N分別是PD,PB的中點(diǎn).
(I)求證:PB∥平面ACM;
(II)求證:MN⊥平面PAC;
(III)求四面體A-MBC的體積.
分析:(I)證明PB∥平面ACM,利用線面平行的判定定理,只需證明線線平行,利用三角形的中位線可得MO∥PB;
(II)證明MN⊥平面PAC,由于MN∥BD,只要證明BD⊥平面PAC,利用線面垂直的判定定理,即可證得;
(III)利用等體積,即VA-MBC=VM-ABC=
1
3
S△ABC•h
,從而可得結(jié)論.
解答:證明:(I)連接AC,BD,AM,MC,MO,MN,且AC∩BD=O
∵點(diǎn)O,M分別是PD,BD的中點(diǎn)
∴MO∥PB,
∵PB?平面ACM,MO?平面ACM
∴PB∥平面ACM.…(4分)
(II)∵PA⊥平面ABCD,BD?平面ABCD
∴PA⊥BD
∵底面ABCD是正方形,∴AC⊥BD
又∵PA∩AC=A
∴BD⊥平面PAC…(7分)
在△PBD中,點(diǎn)M,N分別是PD,PB的中點(diǎn),∴MN∥BD
∴MN⊥平面PAC.…(9分)
(III)∵VA-MBC=VM-ABC=
1
3
S△ABC•h
,h=
1
2
PA
…(12分)
VA-MBC=
1
3
1
2
•AB•AD•
1
2
•PA=
2
3
.…(14分)
點(diǎn)評(píng):本題考查線面平行,考查線面垂直,考查三棱錐的體積,解題的關(guān)鍵是正確運(yùn)用線面平行、線面垂直的判定方法,利用等體積法求體積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)一模)一圓形紙片的圓心為點(diǎn)O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn).把紙片折疊使點(diǎn)A與Q重合,然后展平紙片,折痕與OA交于P點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)一模)某類產(chǎn)品按工藝共分10個(gè)檔次,最低檔次產(chǎn)品每件利潤(rùn)為8元.每提高一個(gè)檔次,每件利潤(rùn)增加2元.用同樣工時(shí),可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個(gè)檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤(rùn)最大時(shí)生產(chǎn)產(chǎn)品的檔次是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)一模)已知函數(shù)f(x)=lnx+
1x
+ax,x∈(0,+∞)
(a為實(shí)常數(shù)).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在[2,+∞)上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)一模)已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=7,則|
b
|=
2
6
2
6

查看答案和解析>>

同步練習(xí)冊(cè)答案