分析 (1)利用函數(shù)的單調(diào)性的定義進(jìn)行證明;
(2)求出f(x)的范圍,即可求g(x)的值域.
解答 (1)證明:$f(x)=-1+\frac{2}{x+1}$,任取x1,x2∈(0,+∞),且x1<x2,
則$f({x_1})-f({x_2})=(-1+\frac{2}{{{x_1}+1}})-(-1+\frac{2}{{{x_2}+1}})=\frac{{2({x_2}-{x_1})}}{{({x_1}+1)({x_2}+1)}}$,
∵x∈(0,+∞),∴x1+1>0,x2+1>0,又x1<x2,∴x2-x1>0,∴f(x1)-f(x2)>0,
即f(x1)>f(x2),∴f(x)在x∈(0,+∞)上的單調(diào)遞減.
(2)解:$f(x)=-1+\frac{2}{x+1}$,
因?yàn)?<x<1,所以1<x+1<2,所以$1<\frac{2}{x+1}<2$,
即0<f(x)<1,
又因?yàn)閥=log2t單調(diào)遞增,所以g(x)值域?yàn)椋?∞,0).
點(diǎn)評 本題考查函數(shù)單調(diào)性的證明,考查函數(shù)的值域,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{5}{2}$) | B. | ($\frac{5}{2}$,+∞) | C. | (-∞,-1) | D. | (6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第t天 | 10 | 17 | 21 | 30 |
Q(件) | 180 | 152 | 136 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | ±15 | C. | 39 | D. | $\frac{225}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com