設F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點,P為曲線右支上的一點,則△F1PF2內(nèi)切圓與x軸的切點坐標為
 
考點:雙曲線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:將內(nèi)切圓的圓心坐標進行轉化成圓與橫軸切點Q的橫坐標,PF1-PF2=F1Q-F2Q=2a,F(xiàn)1Q+F2Q=F1F2解出OQ.
解答: 解:如圖設切點分別為M,N,Q,則△PF1F2的內(nèi)切圓的圓心的橫坐標與Q橫坐標相同.
由雙曲線的定義,PF1-PF2=2a=4.
由圓的切線性質PF1-PF2=FIM-F2N=F1Q-F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F1Q=a+c,F(xiàn)2Q=a-c,
∴OQ=F1F2-F2=c-a.
故答案為:c-a.
點評:本題巧妙地借助于圓的切線的性質,強調了雙曲線的定義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓的兩個焦點在坐標軸上,且經(jīng)過點M(-2,
3
)和N(1,2
3
),求橢圓的標準方程,并畫出草圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的一個焦點為F(-2,0),且長軸長與短軸長的比是2:
3

(1)求橢圓C的標準方程;
(2)設點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點,記|
MP
|的最小值為f(m)若關于實數(shù)m的方程f(m)-2t=0有解,請求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求導:y=(x-k)2e
x
k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:4x2+y2=1及直線L:y=x+m.
(1)當直線L和橢圓C有公共點時,求實數(shù)m的取值范圍;
(2)當直線L被橢圓C截得的弦最長時,求直線L所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的四個頂點順次連接構成一個菱形,該菱形的面積為2
10
,又橢圓的離心率為
15
5
,則橢圓的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù):y=
4x2+2x+1
x2
,x∈(-∞,0)∪(0,
1
2
]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)同時滿足兩個條件,①奇函數(shù);②當x∈[-2,2]時,f(x)是增函數(shù),則f(x)的解析式可以是
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若csinC=acosB+bcosA,則△ABC的形狀為( 。
A、銳角三角形
B、等邊三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

同步練習冊答案