已知橢圓C的一個(gè)焦點(diǎn)為F(-2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是2:
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn),記|
MP
|的最小值為f(m)若關(guān)于實(shí)數(shù)m的方程f(m)-2t=0有解,請(qǐng)求實(shí)數(shù)t的取值范圍.
考點(diǎn):直線與圓錐曲線的關(guān)系,橢圓的標(biāo)準(zhǔn)方程,橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線中的最值與范圍問題
分析:(1)設(shè)橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),由題意得
a2=b2+c2
a
b
=
2
3
c=2
,由此能求出橢圓C的方程.
(2)設(shè)P(x,y)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為
x2
16
+
y2
12
=1
,由|
MP
|2
=(x-m)2+y2=
1
4
(x-4m)2
+12-3m2,由此能求出|
MP
|的最小值實(shí)數(shù)t的取值范圍.
解答: 解:(1)設(shè)橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0).
由題意,得
a2=b2+c2
a
b
=
2
3
c=2

解得a2=16,b2=12.
∴橢圓C的方程為
x2
16
+
y2
12
=1

(2)設(shè)P(x,y)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為
x2
16
+
y2
12
=1
,∴-4≤x≤4,
MP
=(x-m,y)

|
MP
|2
=(x-m)2+y2=(x-m)2+12×(1-
x2
16

=
1
4
x2-2mx+m2+12

=
1
4
(x-4m)2
+12-3m2,
-4≤m≤4
-4≤x≤4
,
∴|
MP
|的最小值f(m)=
m+4,-4≤m<1
12-3m2
,-1≤m≤1
4-m,1<m≤4
,
∴f(m)的值域?yàn)閇0,2
3
],
又由f(m)-2t=0,得2t=f(m),
∴0≤2t≤2
3

故實(shí)數(shù)t的取值范圍為[0,
3
].
點(diǎn)評(píng):本題考查橢圓方程的標(biāo)準(zhǔn)方程的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把十進(jìn)制數(shù)11化為二進(jìn)制數(shù)的結(jié)果是(  )
A、1011(2)
B、1101(2)
C、1110(2)
D、1111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}前n項(xiàng)和Sn,滿足S20=S40,下列結(jié)論正確的是( 。
A、S30是Sn中的最大值
B、S20是Sn中的最小值
C、S30=0
D、S60=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)的坐標(biāo)滿足:
x+y≤4
y≤x
y≥1
,過P的直線交圓C:x2+y2=25于A、B兩點(diǎn),則弦長(zhǎng)|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:(x-1)(x+2)(x-4)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,一條漸近線方程為2x+y=0且過(
3
,4)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin
α
2
=
3
5
,cos
α
2
=
4
5
,則角α是第
 
象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn),P為曲線右支上的一點(diǎn),則△F1PF2內(nèi)切圓與x軸的切點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,五面體EF-ABCD中,ABCD是以點(diǎn)H為中心的正方形,EF∥AB,EH丄平面 ABCD,AB=2,EF=EH=1.
(1)證明:EH∥平面ADF;
(2)證明:平面ADF丄平面ABCD;
(3)求五面體EF-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案