設(shè)函數(shù)f(x)=cos(x-
π
3
)+2cos2
x
2
-1,x∈R.
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c若f(B)=
3
,b=1,c=
3
求a的值.
考點:余弦定理,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:(1)由三角函數(shù)中的恒等變換應(yīng)用化簡解析式可得f(x)=
3
sin(x+
π
3
),由正弦函數(shù)的圖象和性質(zhì)可得f(x)的值域.
(2)由f(B)=
3
,可得sin(B+
π
3
)=1,由0<B<π,可求B的值,由余弦定理得a2-3a+2=0,即可解得a的值.
解答: 解:(1)f(x)=
1
2
cosx+
3
2
sinx+cosx=
3
2
sinx+
3
2
cosx=
3
sin(x+
π
3
),
故f(x)的值域為[-
3
,
3
]…(6分)
(2)由f(B)=
3
sin(x+
π
3
)=
3

∴sin(B+
π
3
)=1   
又∵0<B<π,
∴B=
π
6

由余弦定理:b2=a2+c2-2accosB得a2-3a+2=0,解得a=1或a=2…(12分)
(注:第(2)問也可用正弦定理求解)
點評:本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,考查了余弦定理在解三角形中的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列類比中:
①與圓心距離相等的兩弦相等:類比到空間:與球心距離相等的兩個數(shù)面圓的面積相等;
②圓的面積S=πr2,類比到空間:球的體積為V=πr2;
③圓心與弦(垂直經(jīng))中點的連線垂直于弦,類比到空間,球心與截面圓(不經(jīng)過球心的小截面圓)圓心的連線垂直與截圖,
其中正確的類比是(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex(sinx-cosx)(0≤x≤2015π),求則函數(shù)f(x)的各極大值之和為( 。
A、
eπ(1-e2014π)
1-e
B、
eπ(1-e2016π)
1-e
C、
e(1-e2014π)
1-e
D、
e(1-e2016π)
1-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點,則“k=
3
”是“△OAB的面積為
3
4
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x2-2>a;命題q:?x∈R,x2-4x+a≤0.若“p或q”為真命題,“p且q”為假命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,定義域和值域相同的是( 。
A、y=x2和y=2x
B、y=sinx和y=tanx
C、y=x3和y=log2x
D、y=x2和y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)設(shè)計的算法流程圖用以計算和式12+22+32+…+20152的值,則在判斷框中應(yīng)填寫( 。
A、i≤2015
B、i≤2016
C、≥2015
D、i≥2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足約束條件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,則目標(biāo)函數(shù)z=y-4x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,且滿足i2=-1,a∈R,復(fù)數(shù)z=(a-2i)(1+i)在復(fù)平面內(nèi)對應(yīng)的點為M,則“a=1”是“點M在第四象限”的
 
條件(選填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)

查看答案和解析>>

同步練習(xí)冊答案