直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點,則“k=
3
”是“△OAB的面積為
3
4
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分又不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:直線與圓,簡易邏輯
分析:根據(jù)充分條件和必要條件的定義結(jié)合直線和圓的位置關(guān)系進(jìn)行求解判斷即可.
解答: 解:直線y=kx+1過定點(0,1)在圓上,不妨設(shè)A(0,1),
若“△OAB的面積為
3
4
”,
則S=
1
2
×12•sin∠AOB
=
3
4

∴sin∠AOB=
3
2
,
即∠AOB=
π
3
3

若∠AOB=
π
3
,則直線的傾斜角為
6
π
6
,
若∠AOB=
3
,則直線的傾斜角為
3
π
3
,
k=
3
,則直線的傾斜角為
π
3
,
故“k=
3
”是“△OAB的面積為
3
4
”的充分不必要條件,
故選:A
點評:本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)直線和圓相交對應(yīng)三角形的面積求出對應(yīng)直線的傾斜角是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N+).
(1)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)關(guān)于x的函數(shù)f(x)=(a1+1)x+(a2+1)x2+…+(an+1)xn,求函數(shù)f(x)在點x=1處的導(dǎo)致f′(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若m-
1
2
<x≤m+
1
2
(其中m是整數(shù)),則m叫做距實數(shù)x最近的整數(shù),記作(x),即(x)=m,對于函數(shù)f(x)=|x-(x)|的五個命題,其中正確的有
 
(寫出所有正確命題的序號).
①函數(shù)y=f(x)的值域是[0,+∞);
②函數(shù)y=f(x)是偶函數(shù);
③函數(shù)y=f(x)是周期函數(shù)且最小正周期是1;
④函數(shù)y=f(x)的遞增區(qū)間是[k,k+
1
2
],k∈z;
⑤函數(shù)y=f(x)-lgx有4個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2-ax+1≥0對于一切a∈[-2,2]恒成立,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
cx+1(0<x<c)
2-
x
c2
+1(c≤x<1)
滿足f(c2)=
9
8

(1)求常數(shù)c的值;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個判斷:
①在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等;
②R2統(tǒng)計量是用來刻畫回歸效果的統(tǒng)計量,R2的值越大,說明回歸模型擬合效果越好;
③廢品率x%和每噸生鐵的成本y元之間的回歸直線方程是
y
=2x+256,這表明廢品率每增加1%,生鐵的成本平均每噸增加2元;
④“某彩票的中獎概率為
1
1000
”意味著買1000張這種彩票就一定能中獎.
其中,正確的個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(x-
π
3
)+2cos2
x
2
-1,x∈R.
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c若f(B)=
3
,b=1,c=
3
求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC的外心,AB=6,AC=10,若
AO
=x
AB
+y
AC
,且2x+10y=5,則△ABC的面積為( 。
A、24
B、
20
2
3
C、18或
20
2
3
D、24或20
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4,5這五個數(shù)中,隨機取出兩個數(shù)字,剩下三個數(shù)字的和是奇數(shù)的概率是( 。
A、0.3B、0.4
C、0.5D、0.6

查看答案和解析>>

同步練習(xí)冊答案