【題目】已知拋物線C1的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線為x=﹣3,圓C2:(x32+y21,過圓心C2的直線l與拋物線C1交于點(diǎn)AB,l與圓C2交于點(diǎn)M,N,且|AM||AN|,則|AM||BM|的最小值為_____

【答案】6

【解析】

設(shè)拋物線的標(biāo)準(zhǔn)方程,將點(diǎn)代入拋物線方程,求得拋物線方程,由拋物線的焦點(diǎn)弦性質(zhì),求得,根據(jù)拋物線的定義及基本不等式,即可求得答案.

設(shè)拋物線的方程:y22pxp0),由準(zhǔn)線方程x=﹣3,

可得3,即p6,

拋物線的標(biāo)準(zhǔn)方程為y212x,焦點(diǎn)坐標(biāo)F3,0),

C2:(x32+y21的圓心為(3,0),半徑為1

由直線AB過拋物線的焦點(diǎn),利用極坐標(biāo),可設(shè)Aρ1θ),Bρ2,π+θ),

ρ,可得,

|AM||BM||AF|1|BF|+1)=|AF||BF|

3)(|AF||BF|

3326

當(dāng)且僅當(dāng)|BF|2|AF|9時(shí)取得等號(hào),

|AM||BM|的最小值為6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面 , , , ,

)求證:

)求二面角的余弦值;

(Ⅲ)若點(diǎn)在棱上,且平面求線段的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,C1上任意一點(diǎn)P的直角坐標(biāo)為,通過變換得到點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo).

1)求點(diǎn)的軌跡C2的直角坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),C2于點(diǎn)M、N,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

作物產(chǎn)量(

400

500

概率

作物市場價(jià)格(元/

5

6

概率

1)設(shè)表示在這塊地上種植1季此作物的利潤,求的分布列(利潤產(chǎn)量市場價(jià)格成本);

2)若在這塊地上連續(xù)3季種植此作物,求這3季中的利潤都在區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)有1000名學(xué)生,其中理科班學(xué)生占80%,全體理科班學(xué)生參加一次考試,考試成績近似地服從正態(tài)分布N72,36),若考試成績不低于60分為及格,則此次考試成績及格的人數(shù)約為(

(參考數(shù)據(jù):若ZNμ,σ2),則PμσZμ+σ)=0.6826,Pμ2σZμ+2σ)=0.9544,Pμ3σZμ+3σ)=0.9974

A.778B.780C.782D.784

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ex

1)若fx)的圖象在xa處切線的斜率為e1,求正數(shù)a的值;

2)對(duì)任意的a≥0,fx)>2lnxk恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月AB兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)是定義在R上的偶函數(shù),且對(duì)任意的xR恒有fx+1)=fx1),已知當(dāng)x[0,1]時(shí),fx)=(1x,則

2是函數(shù)fx)的一個(gè)周期;

②函數(shù)fx)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);

③函數(shù)fx)的最大值是1,最小值是0;

x1是函數(shù)fx)的一個(gè)對(duì)稱軸;

⑤當(dāng)x∈(34)時(shí),fx)=(x3.

其中所有正確命題的序號(hào)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心極坐標(biāo)為(3,π),半徑為1的圓.

1)求曲線C1的參數(shù)方程和C2的直角坐標(biāo)方程;

2)設(shè)M,N分別為曲線C1C2上的動(dòng)點(diǎn),求|MN|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案