【題目】已知拋物線C1的頂點在坐標原點,準線為x=﹣3,圓C2:(x﹣3)2+y2=1,過圓心C2的直線l與拋物線C1交于點A,B,l與圓C2交于點M,N,且|AM|<|AN|,則|AM||BM|的最小值為_____.
【答案】6
【解析】
設拋物線的標準方程,將點代入拋物線方程,求得拋物線方程,由拋物線的焦點弦性質(zhì),求得==,根據(jù)拋物線的定義及基本不等式,即可求得答案.
設拋物線的方程:y2=2px(p>0),由準線方程x=﹣3,
可得3,即p=6,
拋物線的標準方程為y2=12x,焦點坐標F(3,0),
圓C2:(x﹣3)2+y2=1的圓心為(3,0),半徑為1,
由直線AB過拋物線的焦點,利用極坐標,可設A(ρ1,θ),B(ρ2,π+θ),
由ρ,可得,
|AM||BM|=|AF|﹣1(|BF|+1)=|AF||BF|
=3()(|AF||BF|)
=3()3(2)6,
當且僅當|BF|=2|AF|=9時取得等號,
則|AM||BM|的最小值為6.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為,C1上任意一點P的直角坐標為,通過變換得到點P的對應點的坐標.
(1)求點的軌跡C2的直角坐標方程;
(2)直線的參數(shù)方程為(為參數(shù)),交C2于點M、N,點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表:
作物產(chǎn)量() | 400 | 500 |
概率 |
作物市場價格(元/) | 5 | 6 |
概率 |
(1)設表示在這塊地上種植1季此作物的利潤,求的分布列(利潤產(chǎn)量市場價格成本);
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中的利潤都在區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級有1000名學生,其中理科班學生占80%,全體理科班學生參加一次考試,考試成績近似地服從正態(tài)分布N(72,36),若考試成績不低于60分為及格,則此次考試成績及格的人數(shù)約為( )
(參考數(shù)據(jù):若Z~N(μ,σ2),則P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974)
A.778B.780C.782D.784
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex.
(1)若f(x)的圖象在x=a處切線的斜率為e﹣1,求正數(shù)a的值;
(2)對任意的a≥0,f(x)>2lnxk恒成立,求整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學生中隨機抽取1人,估計該學生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學期望;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認為樣本僅使用A的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=()1﹣x,則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當x∈(3,4)時,f(x)=()x﹣3.
其中所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1:,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C2是圓心極坐標為(3,π),半徑為1的圓.
(1)求曲線C1的參數(shù)方程和C2的直角坐標方程;
(2)設M,N分別為曲線C1,C2上的動點,求|MN|的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com