(2012•山東)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E為線段B1C上的一點(diǎn),則三棱錐A-DED1的體積為
1
6
1
6
分析:將三棱錐A-DED1選擇△ADD1為底面,E為頂點(diǎn),進(jìn)行等體積轉(zhuǎn)化V A-DED1=V E-ADD1后體積易求
解答:解:將三棱錐A-DED1選擇△ADD1為底面,E為頂點(diǎn),則V A-DED1=V E-ADD1
其中S△ADD1=
1
2
SA1D1DA=
1
2
,E到底面ADD1的距離等于棱長(zhǎng)1,
V=
1
3
1
2
•1=
1
6

故答案為:
1
6
點(diǎn)評(píng):本題考查了三棱柱體積的計(jì)算,等體積轉(zhuǎn)化法是常常需要優(yōu)先考慮的策略.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•山東)如圖,幾何體E-ABCD是四棱錐,△ABD為正三角形,CB=CD,EC⊥BD.
(Ⅰ)求證:BE=DE;
(Ⅱ)若∠BCD=120°,M為線段AE的中點(diǎn),求證:DM∥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•山東)如圖,橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求
|PQ|
|ST|
的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•山東)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)分別為線段AA1,B1C上的點(diǎn),則三棱錐D1-EDF的體積為
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•山東)如圖是根據(jù)部分城市某年6月份的平均氣溫(單位:℃)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5],樣本數(shù)據(jù)的分組為[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知樣本中平均氣溫低于22.5℃的城市個(gè)數(shù)為11,則樣本中平均氣溫不低于25.5℃的城市個(gè)數(shù)為
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案