【題目】某研究所開發(fā)了一種新藥,測得成人注射該藥后血藥濃度y(微克/毫升)與給藥時間x(小時)之間的若干組數(shù)據(jù),并由此得出y與x之間的一個擬合函數(shù)y=40(0.6x﹣0.62x)(x∈[0,12]),其簡圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問題:
(1)求藥峰濃度與藥峰時間(精確到0.01小時),并指出血藥濃度隨時間的變化趨勢;
(2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時間)(精確到0.01小時).
【答案】(1)藥峰濃度為10,藥峰時間為1.36小時;注射該藥后血藥濃度逐漸增加,到1.36小時時達到峰值,然后血藥濃度逐漸降低;(2)2.36小時.
【解析】
(1)根據(jù)擬合函數(shù)利用換元法可求最值,結(jié)合單調(diào)性可得血藥濃度隨時間的變化趨勢;
(2)根據(jù)半衰期的含義解方程可求.
(1)由y=40(0.6x﹣0.62x)(x∈[0,12]),
令0.6x=t,t∈[0.612,1],
則y=40(0.6x﹣0.62x)=40(﹣t2+t),
∴當t∈[0.612,1],即,x1.36時,
y有最大值為10.
故藥峰濃度為10,藥峰時間為1.36小時;
由圖象可知,注射該藥后血藥濃度逐漸增加,到1.36小時時達到峰值,然后血藥濃度逐漸降低;
(2)在y=40(0.6x﹣0.62x)中,取y=5,得40(0.6x﹣0.62x)=5,
即﹣8t2+8t﹣1=0,解得t或t(舍),
即0.147,得x3.72.
故血藥濃度的半衰期為3.72﹣1.36=2.36小時.
科目:高中數(shù)學 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個湖的邊界是圓心為O的圓,湖的一側(cè)有一條直線型公路l,湖上有橋AB(AB是圓O的直徑).規(guī)劃在公路l上選兩個點P、Q,并修建兩段直線型道路PB、QA.規(guī)劃要求:線段PB、QA上的所有點到點O的距離均不小于圓O的半徑.已知點A、B到直線l的距離分別為AC和BD(C、D為垂足),測得AB=10,AC=6,BD=12(單位:百米).
(1)若道路PB與橋AB垂直,求道路PB的長;
(2)在規(guī)劃要求下,P和Q中能否有一個點選在D處?并說明理由;
(3)對規(guī)劃要求下,若道路PB和QA的長度均為d(單位:百米).求當d最小時,P、Q兩點間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建造一個矩形游泳池及左右兩側(cè)兩個大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊在上,矩形的一邊在上,點在圓周上,在直徑上,且,設(shè).若每平方米游泳池的造價和休息區(qū)造價分別為和.
(1)記游泳池及休息區(qū)的總造價為,求的表達式;
(2)為進行投資預算,當為何值時,總造價最大?并求出總造價的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如表是我國2012年至2018年國內(nèi)生產(chǎn)總值(單位:萬億美元)的數(shù)據(jù):
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
國內(nèi)生產(chǎn)總值 (單位:萬億美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)從表中數(shù)據(jù)可知和線性相關(guān)性較強,求出以為解釋變量為預報變量的線性回歸方程;
(2)已知美國2018年的國內(nèi)生產(chǎn)總值約為20.5萬億美元,用(1)的結(jié)論,求出我國最早在那個年份才能趕上美國2018年的國內(nèi)生產(chǎn)總值?
參考數(shù)據(jù):,
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com