已知在△ABC中,若AB=6,AC=5,且點O是△ABC的外接圓的圓心,則
AO
BC
的值是
 
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用
分析:設(shè)外接圓的半徑為r,由向量的三角形法則,以及向量的數(shù)量積的定義,結(jié)合等腰三角形的性質(zhì),即可得到.
解答: 解:設(shè)外接圓的半徑為r,
AO
BC
=
AO
•(
AC
-
AB

=
AO
AC
-
AO
AB

=r•5•cos∠OAC-r•6•cos∠OAB
=5×
5
2
-6×3=-
11
2

故答案為:-
11
2
點評:本題考查向量的數(shù)量積的定義和性質(zhì),考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+1(a∈R).
(1)函數(shù)y=f(x)是否可能在R上是單調(diào)函數(shù)?若可能,求出實數(shù)a的取值范圍.
(2)若函數(shù)y=f(x)在區(qū)間(0,
2
3
)上遞增,在區(qū)間(1,+∞)上遞減,求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校組織同學們參加紅色七日游---海上夏令營活動,如圖,海中小島A周圍20海里內(nèi)有暗礁,夏令營的船只船向正南航行,在B處測得小島A在船的南偏東30°,船行30海里后,在C處測得小島A在船的南偏東45°,如果此船不改變航向,繼續(xù)向南航行,有無觸礁的危險?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠ABC=90°,SA⊥平面ABC,過點A向SC和SB引垂線,垂足分別是P、Q,求證:
(1)AQ⊥平面SBC;
(2)PQ⊥SC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sinθ+cosθ=
2
,則sin4θ+cos4θ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一個空間幾何體的正視圖和左視圖都是邊長為1的正三角形,俯視圖是一個圓,那么這個幾何體的內(nèi)切球表面積為( 。
A、
π
4
B、
π
6
C、
2
2
π
D、
1
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)
1
sin10°
-
3
cos10°

(2)sin40°(tan10°-
3

(3)tan70°cos10°(
3
tan20°-1)
(4)sin50°(1+
3
tan10°)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=
2
a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求證:∠PCD為二面角P-BC-D的平面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:sin(-
26
3
π
)=
 

查看答案和解析>>

同步練習冊答案