已知點(diǎn)是離心率為的橢圓C:上的一點(diǎn).斜率為的直線BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△ABD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由?
(Ⅲ)求證:直線AB、AD的斜率之和為定值.
(Ⅰ),, ∴,, ∴ 4分 (Ⅱ)設(shè)直線BD的方程為
、 ② , 設(shè)為點(diǎn)到直線BD:的距離, ∴ ∴,當(dāng)且僅當(dāng)時(shí)取等號(hào). 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/3401/0021/304939f0ea026df3bbb7247acd9db611/C/Image192.gif" width=21 height=17>,所以當(dāng)時(shí),的面積最大,最大值為 9分 (Ⅲ)設(shè),,直線、的斜率分別為:、,則
。 (*) 將(Ⅱ)中①、②式代入(*)式整理得 =0, 即0 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
| ||
2 |
x0 |
a |
y0 |
b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
k |
2 |
k |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的
左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為.一等軸雙曲線的頂點(diǎn)是該橢
圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)
分別 為和
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
下圖展示了一個(gè)由區(qū)間(其中為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間中的實(shí)數(shù)對(duì)應(yīng)線段上的點(diǎn),如圖1;將線段圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)、恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2 ;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在軸上,已知此時(shí)點(diǎn)的坐標(biāo)為,如圖3,在圖形變化過程中,圖1中線段的長度對(duì)應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點(diǎn),則與實(shí)數(shù)對(duì)應(yīng)的實(shí)數(shù)就是,記作,
現(xiàn)給出下列5個(gè)命題
①; ②函數(shù)是奇函數(shù);③函數(shù)在上單調(diào)遞增; ④.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;⑤函數(shù)時(shí)AM過橢圓的右焦點(diǎn).其中所有的真命題是: ( )
A.①③⑤ B.②③④ C.②③⑤ D.③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年湖南省懷化市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com