【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.

1求橢圓的標(biāo)準(zhǔn)方程;

2經(jīng)過橢圓右焦點的直線和橢圓交于兩點,點在橢圓上,且,

其中為坐標(biāo)原點,求直線的斜率.

【答案】12

【解析】

試題分析:1知,可設(shè),其中,把,代入橢圓方程中解得,故橢圓方程為

2知直線的斜率不為零,故可設(shè)直線方程為,設(shè),由已知,從而,由于均在橢圓上,故有:,三式結(jié)合化簡得

,把直線方程為和橢圓方程聯(lián)立并結(jié)合韋達(dá)定理,即可求得的值

試題解析:1知,可設(shè),其中

由已知,代入橢圓中得:,解得

從而,

故橢圓方程為

2設(shè),由已知

從而,由于均在橢圓上,故有:

第三個式子變形為:

將第一,二個式子帶入得: *

分析知直線的斜率不為零,故可設(shè)直線方程為,與橢圓聯(lián)立得:

,由韋達(dá)定理

*變形為:

將韋達(dá)定理帶入上式得:,解得

因為直線的斜率,故直線的斜率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)當(dāng)為常數(shù),且在區(qū)間變化時,求的最小值

2)證明:對任意的,總存在,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點軸上,點軸的正半軸上,點在直線上,且滿足

(Ⅰ)當(dāng)點軸上移動時,求點的軌跡的方程;

(Ⅱ)過點做直線與軌跡交于兩點,若在軸上存在一點,使得是以點為直角頂點的直角三角形,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地自來苯超標(biāo),當(dāng)?shù)刈詠硭緦λ|(zhì)檢測后,決定在水中投放一種藥劑來凈化水質(zhì),已知每投放質(zhì)量為藥劑后,經(jīng)過該藥劑在水中釋放的濃度毫克/升)滿足,其中當(dāng)藥劑在水中的濃度不低于5(毫/升)時稱為有效凈化;當(dāng)藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升稱為最佳凈化.

如果投放的藥劑質(zhì)量為,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?

如果投放的藥劑質(zhì)量,為了使在9天(從投放藥劑算起包括9天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:在數(shù)列中,若為常數(shù))則稱為“等方差數(shù)列”,下列是對“等方差數(shù)列”的有關(guān)判斷( )

①若是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;

是“等方差數(shù)列”;

③若是“等方差數(shù)列”,則數(shù)列為常)也是“等方差數(shù)列”;

④若既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.

其中正確命題的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,且上單調(diào)遞增,求實數(shù)的取值范圍

2是否存在實數(shù),使得函數(shù)上的最小值為?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1求橢圓的標(biāo)準(zhǔn)方程;

2已知點,和平面內(nèi)一點,過點任作直線與橢圓相交于兩點,設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是( )

A.多于4個 B.4個

C.3個 D.2個

查看答案和解析>>

同步練習(xí)冊答案