已知等比數(shù)列中各項(xiàng)均為正,有,,
等差數(shù)列中,,點(diǎn)在直線上.
(1)求和的值;(2)求數(shù)列,的通項(xiàng)和;
(3)設(shè),求數(shù)列的前n項(xiàng)和.
(1);(2),;(3).
解析試題分析:(1)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/8d/c/uq93v3.png" style="vertical-align:middle;" />, 又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/25/5/j14fx1.png" style="vertical-align:middle;" />是正項(xiàng)等比數(shù)列,故,利用等比數(shù)列的某兩項(xiàng)可知其通項(xiàng)公式的求解;(2)由可得,進(jìn)而求得的通項(xiàng),,點(diǎn)在直線上得到,得到是以1為首項(xiàng)以為2公差的等差數(shù)列∴(3)表示出,并運(yùn)用列項(xiàng)求和解決.
(1)∵ ∴ ,又, 解得,(舍去) ,解得,(舍去)(2)∵ ∴,∵中各項(xiàng)均為正,∴,又∴即數(shù)列是以2為首項(xiàng)以為2公比的等比數(shù)列 ∴ ∵點(diǎn)在直線上,∴,又∴數(shù)列是以1為首項(xiàng)以為2公差的等差數(shù)列∴(3)由(1)得∴ ,
∴因此
,
即:,∴.
考點(diǎn):1、數(shù)列的綜合應(yīng)用,2、數(shù)列的通項(xiàng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
① 是數(shù)列的前項(xiàng)和,若,則數(shù)列是等差數(shù)列
②若,則
③已知函數(shù),若存在,使得成立,則
④在中,分別是角A、B、C的對邊,若則為等腰直角三角形
其中正確的有 (填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足.
(1)求;
(2)由(1)猜想的一個通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的結(jié)論;(本題滿分13分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校高一學(xué)生1000人,每周一次同時(shí)在兩個可容納600人的會議室,開設(shè)“音樂欣賞”與“美術(shù)鑒賞”的校本課程.要求每個學(xué)生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為,其余的人聽“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個課中自由選擇.據(jù)往屆經(jīng)驗(yàn),凡是這一次選擇“音樂欣賞”的學(xué)生,下一次會有20﹪改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會有30﹪改選“音樂欣賞”,用分別表示在第次選“音樂欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若,分別求出第二次,第三次選“音樂欣賞”課的人數(shù);
(2)①證明數(shù)列是等比數(shù)列,并用表示;
②若要求前十次參加“音樂欣賞”課的學(xué)生的總?cè)舜尾怀^5800,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求滿足不等式的所有正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}是一個公差大于0的等差數(shù)列,且滿足a4a5=55,a3+a6=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}和數(shù)列{bn}滿足等式:
an-1=,an=(為正整數(shù)),
設(shè)數(shù)列{bn}的前項(xiàng)和,cn=(an+19)(Sn+50),數(shù)列{cn}前n項(xiàng)和為Tn,
求Tn的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)記數(shù)列的前項(xiàng)和為,求(用含的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
稱滿足以下兩個條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若等比數(shù)列為階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(2)若一個等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記n階“期待數(shù)列”的前k項(xiàng)和為:
(i)求證:;
(ii)若存在使,試問數(shù)列能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com