【題目】對平面區(qū)域,用表示屬于的所有整點(diǎn)(即平面上坐標(biāo)都是整數(shù)的點(diǎn))的個(gè)數(shù).若表示由曲線和兩直線所圍成的區(qū)域(包括邊界);表示由曲線和兩直線所圍成的區(qū)域(包括邊界).則______.
【答案】1010
【解析】
先畫出示意圖(如圖),
其中A表示由曲線y=x2(x≥0)和兩直線x=10,y=1所圍成的區(qū)域(包括邊界),
B表示由曲線y=x2(x≥0)和兩直線x=1,y=100所圍成的區(qū)域,
由于102=100.所以A∪B所圍成的區(qū)域恰好為矩形PQRS,
其中PQ=99,QR=9,且點(diǎn)Q、S均在曲線y=x2(x≥0)上.
因此,有N(A∪B)=(99+1)×(9+1)=1000,
又A∩B形成的區(qū)域?yàn)閽佄锞弧段SQ,
它上面的整點(diǎn)個(gè)數(shù)為N(A∩B)=9+1=10,
N(A∪B)+N(A∩B)=1000+10=1010.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名學(xué)生作為樣本測量身高.測量發(fā)現(xiàn)被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組與第八組人數(shù)之和為第七組的兩倍.
(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(2)求第六組和第七組的頻率并補(bǔ)充完整頻率分布直方圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年,在“雜交水稻之父”袁隆平的實(shí)驗(yàn)田內(nèi)種植了,兩個(gè)品種的水稻,為了篩選出更優(yōu)的品種,在,兩個(gè)品種的實(shí)驗(yàn)田中分別抽取7塊實(shí)驗(yàn)田,如圖所示的莖葉圖記錄了這14塊實(shí)驗(yàn)田的畝產(chǎn)量(單位:),通過莖葉圖比較兩個(gè)品種的均值及方差,并從中挑選一個(gè)品種進(jìn)行以后的推廣,有如下結(jié)論:①品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③品種水稻比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④品種水稻比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;其中正確結(jié)論的編號(hào)為( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與圓交于,兩點(diǎn),過點(diǎn)的直線與圓交于,兩點(diǎn).
若直線垂直平分弦,求實(shí)數(shù)的值;
已知點(diǎn),在直線上(為圓心),存在定點(diǎn)(異于點(diǎn)),滿足:對于圓上任一點(diǎn),都有為同一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo)及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣位于沙漠地帶,人與自然長期進(jìn)行頑強(qiáng)的斗爭,到1998年底全縣的綠化率已達(dá)到30%。從1999年開始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化。
(1)設(shè)全縣面積為1,1998年底綠化總面積為,經(jīng)過n年后綠化總面積為,求證:。
(2)至少需要多少年的努力,才能使全縣的綠化率超過60%?(年取整數(shù),lg2=0.3010)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,是非空數(shù)集且.設(shè),.
(1)若,,求;
(2)是否存在實(shí)數(shù),使得,且?若存在,求出所有滿足條件的;若不存在,說明理由;
(3)若且,,單調(diào)遞增,求集合,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: 的一個(gè)頂點(diǎn)與拋物線: 的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個(gè)八面體的各條棱長均為,四邊形為正方形,給出下列命題:
①不平行的兩條棱所在的直線所成的角是或; ②四邊形是正方形;
③點(diǎn)到平面的距離為; ④平面與平面所成的銳二面角的余弦值為.
其中正確的命題全部序號(hào)為_________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com