【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若點在直線上,且,求直線的斜率;

2)若,求曲線上的點到直線的距離的最大值.

【答案】12

【解析】

1)根據(jù)直線的參數(shù)方程,設(shè)出點的坐標(biāo),代入直線方程并化簡,即可求得,即為直線的斜率;

2)先將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程,結(jié)合圓心到直線距離公式,再加半徑即為圓上的點到直線距離的最大值.

1)設(shè)點

,

整理可得,即,

∴直線的斜率為.

2)曲線的方程可化為

化成普通方程可得,即,

曲線表示圓心為,半徑為1的圓,

直線的參數(shù)方程化成普通方程可得,

圓心到直線的距離為

則曲線上的點到直線的距離的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,為其焦點,為其準(zhǔn)線,過任作一條直線交拋物線于兩點,、分別為、上的射影,的中點,給出下列命題:

1;(2;(3;

4的交點的軸上;(5交于原點.

其中真命題的序號為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行圍棋比賽,比賽要求雙方下滿五盤棋,開始時甲每盤棋贏的概率為,由于心態(tài)不穩(wěn),甲一旦輸一盤棋,他隨后每盤棋贏的概率就變?yōu)?/span>.假設(shè)比賽沒有和棋,且已知前兩盤棋都是甲贏.

(Ⅰ)求第四盤棋甲贏的概率;

(Ⅱ)求比賽結(jié)束時,甲恰好贏三盤棋的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若點在直線上,且,求直線的斜率;

2)若,求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,如圖,C1,C2分別交x軸正半軸于點E,A.射線OD分別交C1,C2于點BD,動點P滿足直線BPy軸垂直,直線DPx軸垂直.


1)求動點P的軌跡C的方程;

2)過點E作直線l交曲線C與點MN,射線OHl與點H,且交曲線C于點Q.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,為等邊三角形,是棱上一點.

1)證明:

2)若平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD-A1B1C1D1中,ABCDAB1BC,且AA1AB.求證:

1AB平面D1DCC1

2AB1⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,則下面結(jié)論正確的是(

A.上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線

B.上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線

C.向左平移個單位長度,再把得到的曲線上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍.縱坐標(biāo)不變,得到曲線

D.向左平移個單位長度,再把得到的曲線上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

同步練習(xí)冊答案