【題目】已知正六邊形ABCDEF的邊長(zhǎng)為2,沿對(duì)角線AE將△FAE的頂點(diǎn)F翻折到點(diǎn)P處,使得 .
(1)求證:平面PAE⊥平面ABCDE;
(2)求二面角B﹣PC﹣D的平面角的余弦值.
【答案】
(1)證明:連結(jié)AC,EC,取AE中點(diǎn)O,連結(jié)PO,CO,
由已知得PE=PA=2,AE=AC=EC= = ,
∴PO⊥AE,CO⊥AE,∴∠POC是二面角P﹣AE﹣C的二面角,
∴PO= =1,CO= =3,∴PO2+CO2=PC2,
∴PO⊥CO,∴∠POC=90°,∴平面PAE⊥平面ABCDE
(2)證明:解:以O(shè)為原點(diǎn),OA為x軸,OC為y軸,OP為z軸,建立空間直角坐標(biāo)系,
P(0,0,1),C(0,3,0),B( ,2,0),D(﹣ ,2,0),
=( ), =(0,3,﹣1), =(﹣ ),
設(shè)平面PBC的法向量 =(x,y,z),
則 ,取x=1,得 =(1, ,3 ),
設(shè)平面PCD的法向量 =(a,b,c),
則 ,取b=1,得 =(﹣ ,1,3),
設(shè)二面角B﹣PC﹣D的平面角為θ,
則cosθ= = = .
∴二面角B﹣PC﹣D的平面角的余弦值為 .
【解析】(1)連結(jié)AC,EC,取AE中點(diǎn)O,連結(jié)PO,CO,推導(dǎo)出PO⊥AE,CO⊥AE,則∠POC是二面角P﹣AE﹣C的二面角,求出PO⊥CO,由此能證明平面PAE⊥平面ABCDE.(2)以O(shè)為原點(diǎn),OA為x軸,OC為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B﹣PC﹣D的平面角的余弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率為,且過(guò)點(diǎn),過(guò)橢圓的左頂點(diǎn)A作直線軸,點(diǎn)M為直線上的動(dòng)點(diǎn),點(diǎn)B為橢圓右頂點(diǎn),直線BM交橢圓C于P
(1)求橢圓C的方程;
(2)求證:;
(3)試問(wèn)是否為定值?若是定值,請(qǐng)求出該定值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長(zhǎng)交橢圓于另一點(diǎn)D若 ≤e≤ ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列滿足,,.
求數(shù)列的通項(xiàng)公式;
設(shè),求的前n項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
當(dāng)時(shí),求函數(shù)圖象過(guò)的定點(diǎn);
當(dāng),,且有最小值2時(shí),求a的值;
當(dāng),時(shí),有恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若平面與平面所成的銳二面角的大小為,求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,E、F分別是、CD的中點(diǎn),(1)證明: ;(2)求異面直線與所成的角;(3)證明:平面平面。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F.
(1)求證:AB∥EF;
(2)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com