7.拋物線y=4x2的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

分析 直接利用拋物線方程求解即可.

解答 解:拋物線y=4x2的焦點(diǎn)到準(zhǔn)線的距離為:P=$\frac{1}{8}$.
故選:B

點(diǎn)評 本題考查拋物線的標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,把拋物線的方程化為標(biāo)準(zhǔn)方程是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若公差為2的等差數(shù)列{an}的前9項(xiàng)和為81,則a9=( 。
A.1B.9C.17D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,三棱柱OAD-EBC,其中A,C,B,D,E均為以O(shè)為球心,半徑為4的半球面上,EF為直徑,側(cè)面ABCD為邊長等于4的正方形,則三棱柱OAD-EBC的高為( 。
A.$\frac{8\sqrt{6}}{3}$B.$\frac{4\sqrt{6}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{1}{2}$x2-lnx的遞減區(qū)間為( 。
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax2
(Ⅰ)記m(x)=f′(x),若m′(1)=3,求實(shí)數(shù)a的值;
(Ⅱ已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線y2-2x2=8的漸近線方程為$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合$P=\{x|y=\sqrt{2-x}\}$,Q={x|y=ln(x+1)},則P∩Q=( 。
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|-1<x≤2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|-1<x<2},B={x|0<x<3},則A∪B等于(  )
A.(0,2)B.(2,3)C.(-1,3)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.傾斜角為120°且在y軸上的截距為-2的直線方程為(  )
A.y=-$\sqrt{3}$x+2B.y=-$\sqrt{3}$x-2C.y=$\sqrt{3}$x+2D.y=$\sqrt{3}$x-2

查看答案和解析>>

同步練習(xí)冊答案