2.已知函數(shù)f(x)=lnx+ax2
(Ⅰ)記m(x)=f′(x),若m′(1)=3,求實(shí)數(shù)a的值;
(Ⅱ已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)求出m(x),計(jì)算m′(1),從而求出a的值即可;
(Ⅱ)求出函數(shù)g(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≥-$\frac{1}{x}$在(0,+∞)成立,求出a的范圍即可.

解答 解:(Ⅰ)m(x)=$\frac{1}{x}$+2ax,m′(x)=-$\frac{1}{{x}^{2}}$+2a,
則m′(1)=-1+2a=3,解得:a=2;
(Ⅱ)g(x)=lnx+ax2-ax2+ax=lnx+ax,
g′(x)=$\frac{1}{x}$+a,
若g(x)在(0,+∞)上單調(diào)遞增,
則g′(x)≥0在(0,+∞)成立,
則a≥-$\frac{1}{x}$在(0,+∞)成立,
故a≥0.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x與y之間的一組數(shù)據(jù):
x0246
ya353a
已求得關(guān)于y與x的線性回歸方程$\stackrel{∧}{y}$=1.2x+0.55,則a的值為2.15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=$\left\{\begin{array}{l}{e^x}+ax,x>0\\ \frac{1}{e^x}-ax,x<0\end{array}$,若函數(shù)f(x)有四個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$({-∞,-\frac{1}{e}})$B.(-∞,-e)C.(e,+∞)D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若8a2+a5=0,則$\frac{{S}_{5}}{{S}_{2}}$等于( 。
A.$\frac{11}{3}$B.5C.-8D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.拋物線y=9x2的焦點(diǎn)坐標(biāo)為(0,$\frac{1}{36}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y=4x2的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,各棱長均為2,D為AB的中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)求證:平面A1CD⊥平面ABB1A1
(3)求A1B1與平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A是射線x+y=0(x≤0)上的動(dòng)點(diǎn),B是x軸正半軸的動(dòng)點(diǎn),若直線AB與圓x2+y2=1相切,則|AB|的最小值是$2+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),l為其準(zhǔn)線,過F作一條直線交拋物線于A,B兩點(diǎn),A′,B′分別為A,B在l上的射線,M為A′B′的中點(diǎn),給出下列命題:
①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F與AM的交點(diǎn)在y軸上;
⑤AB′與A′B交于原點(diǎn).
其中真命題的是①②③④⑤.(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊答案