已知函數(shù)f(x)=2ax3-3ax2+1,g(x)=-x+(a∈R).
(Ⅰ) 當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)a≤0時(shí),若任意給定的x∈[0,2],在[0.2]上總存在兩個(gè)不同的xi(i=1,2),使 得f(xi)=g(x)成立,求a的取值范圍.
【答案】分析:(I)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),可求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)利用f(x)的最大值大于g(x)的最大值,即可求得a的取值范圍.
解答:解:(I)求導(dǎo)函數(shù)可得f′(x)=6x(x-1)------------------------(2分)
由f′(x)>0,可得x>1或x<0;由f′(x)<0,可得0<x<1;
故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,0)和(1,+∞);單調(diào)遞減區(qū)間是(0,1).-----------(6分)
(II) ①當(dāng)a=0時(shí),,顯然不可能滿足題意;------------(7分)
②當(dāng)a<0時(shí),f'(x)=6ax2-6ax=6ax(x-1).
 x(0,1)1(1,2)2
f′(x)+-
f(x)1極大值1-a1+4a
------------------------------(9分)
又因?yàn)楫?dāng)a<0時(shí),g(x)=-x+在[0,2]上是增函數(shù),
∴對(duì)任意,-------------------------------(11分)
由題意可得,解得a<-1.
綜上,a的取值范圍為(-∞,-1).---------(13分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查存在性問題,確定函數(shù)的最大值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案