函數(shù)y=
|x|+x
+
1
2
-2x  
的定義域是
 
分析:根據(jù)二次根式的性質(zhì)和指數(shù)函數(shù)的意義,被開方數(shù)大于等于0,函數(shù)y=2x是單調(diào)增函數(shù),就可以求解.
解答:解:由題意得:
|x|+x
≥0
1
2
-2x
≥0

x∈R
x≤1
?x≤1.
故填:(-∞,-1].
點評:本題主要考查自變量的取值范圍.函數(shù)自變量的范圍一般從三個方面考慮:
(1)當(dāng)函數(shù)表達(dá)式是整式時,自變量可取全體實數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達(dá)式是二次根式時,被開方數(shù)非負(fù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=f(x)(x∈R),給出下列命題:
(1)在同一直角坐標(biāo)系中,函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于直線x=0對稱;
(2)若f(1-x)=f(x-1),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱;
(3)若f(1+x)=f(x-1),則函數(shù)y=f(x)是周期函數(shù);
(4)若f(1-x)=-f(x-1),則函數(shù)y=f(x)的圖象關(guān)于點(0,0)對稱.
其中所有正確命題的序號是
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)三模)已知函數(shù)y=f(x),x∈D,y∈A;g(x)=x2-(4
7
tanθ)x+1,
(1)當(dāng)f(x)=sin(x+φ)為偶函數(shù)時,求φ的值.
(2)當(dāng)f(x)=sin(2x+
π
6
)+
3
sin(2x+
π
3
)時,g(x)在A上是單調(diào)遞減函數(shù),求θ的取值范圍.
(3)當(dāng)f(x)=m•sin(ωx+φ1)時,(其中m∈R且m≠0,ω>0),函數(shù)f(x)的圖象關(guān)于點(
π
2
,0)對稱,又關(guān)于直線x=π成軸對稱,試探討ω應(yīng)該滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案