對于函數(shù)y=f(x)(x∈R),給出下列命題:
(1)在同一直角坐標系中,函數(shù)y=f(1-x)與y=f(x-1)的圖象關于直線x=0對稱;
(2)若f(1-x)=f(x-1),則函數(shù)y=f(x)的圖象關于直線x=1對稱;
(3)若f(1+x)=f(x-1),則函數(shù)y=f(x)是周期函數(shù);
(4)若f(1-x)=-f(x-1),則函數(shù)y=f(x)的圖象關于點(0,0)對稱.
其中所有正確命題的序號是
(3)(4)
(3)(4)
分析:(1)函數(shù)y=f(x-1)與y=f(1-x)的圖象可以由f(x)與y=f(-x)的圖象向右移了一個單位而得到,從而函數(shù)y=f(x-1)與y=f(1-x)的圖象關于直線x=1對稱;
(2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),則函數(shù)y=f(x)的圖象關于直線x=0對稱;
(3)若f(1+x)=f(x-1),則f(x+2)=f[(x+1)+1]=f(x),函數(shù)y=f(x)是以2為周期的周期函數(shù);
(4)若f(1-x)=-f(x-1),則可得f(-t)=-f(t),即函數(shù)f(x)為奇函數(shù),從而可得函數(shù)y=f(x)的圖象關于點(0,0)對稱.
解答:解:(1):∵f(x)與y=f(-x)的圖象關于直線x=0對稱,函數(shù)y=f(x-1)與y=f(1-x)的圖象可以由f(x)與y=f(-x)的圖象向右移了一個單位而得到,從而可得函數(shù)y=f(x-1)與y=f(1-x)的圖象關于直線x=1對稱;故(1)錯誤
(2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),則函數(shù)y=f(x)的圖象關于直線x=0對稱;故(2)錯誤
(3)若f(1+x)=f(x-1),則f(x+2)=f[(x+1)+1]=f(x),函數(shù)y=f(x)是以2為周期的周期函數(shù);故(3)正確
(4)若f(1-x)=-f(x-1),則可得f(-t)=-f(t),即函數(shù)f(x)為奇函數(shù),從而可得函數(shù)y=f(x)的圖象關于點(0,0)對稱.故(4)正確
故答案為(3)(4)
點評:本題考點是兩個函數(shù)圖象的對稱性,考查根據(jù)已知函數(shù)圖象的性質來判斷與之相關函數(shù)性質的能力,即圖象變換的能力,規(guī)律性固定,學習時要注意總結.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),且y=f(x+
π
2
)
為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù)②x=π是它的一條對稱軸;③(-π,0)是它圖象的一個對稱中心;
④當x=
π
2
時,它一定取最大值;其中描述正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①函數(shù)y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
②函數(shù)y=log2x2與函數(shù)y=2log2x是相等函數(shù);
③對于指數(shù)函數(shù)y=2x與冪函數(shù)y=x2,總存在x0,當x>x0 時,有2x>x2成立;
④對于函數(shù)y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內(nèi)有零點.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
③⑤
③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•和平區(qū)一模)函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a,已知y=f(x)無零點,設F(x)=f2(x)+f2(-x),則對于函數(shù)y=F(x)有如下四種說法:①定義域是[-b,b];②最小值是0;③是偶函數(shù);④在定義域內(nèi)單調(diào)遞增.其中正確的說法是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•上海模擬)對于函數(shù)y=f(x)的圖象上任意兩點A(a,f(a)),B(b,f(b)),設點C分
AB
的比為λ(λ>0).若函數(shù)為f(x)=x2(x>0),則直線AB必在曲線AB的上方,且由圖象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函數(shù)為f(x)=log2010x,請分析該函數(shù)的圖象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在區(qū)間[-3,3]上的函數(shù)y=f(x)滿足f(-x)+f(x)=0,對于函數(shù)y=f(x)的圖象上任意兩點(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若實數(shù)a,b滿足f(a2-2a)+f(2b-b2)≤0,則點(a,b)所在區(qū)域的面積為( 。
A、8B、4C、2D、1

查看答案和解析>>

同步練習冊答案