已知拋物線(xiàn)C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線(xiàn)l:x-y-2=0的距離為,設(shè)P為直線(xiàn)l上的點(diǎn),過(guò)點(diǎn)P作拋物線(xiàn)C的兩條切線(xiàn)PA,PB,其中A,B為切點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線(xiàn)l上的定點(diǎn)時(shí),求直線(xiàn)AB的方程;
(3)當(dāng)點(diǎn)P在直線(xiàn)l上移動(dòng)時(shí),求|AF|·|BF|的最小值.
(1) x2=4y   (2) y=x0x-y0   (3)

解:(1)∵拋物線(xiàn)C的焦點(diǎn)F(0,c)(c>0)到直線(xiàn)l:x-y-2=0的距離為,
=,得c=1,
∴F(0,1),即拋物線(xiàn)C的方程為x2=4y.
(2)設(shè)切點(diǎn)A(x1,y1),B(x2,y2),
由x2=4y得y′=x,
∴切線(xiàn)PA:y-y1=x1(x-x1),
有y=x1x-+y1,而=4y1,
即切線(xiàn)PA:y=x1x-y1,
同理可得切線(xiàn)PB:y=x2x-y2.
∵兩切線(xiàn)均過(guò)定點(diǎn)P(x0,y0),
∴y0=x1x0-y1,y0=x2x0-y2,
由此兩式知點(diǎn)A,B均在直線(xiàn)y0=xx0-y上,
∴直線(xiàn)AB的方程為y0=xx0-y,
即y=x0x-y0.
(3)設(shè)點(diǎn)P的坐標(biāo)為(x′,y′),
由x′-y′-2=0,
得x′=y′+2,
則|AF|·|BF|=·
=·
=·
=(y1+1)·(y2+1)
=y1y2+(y1+y2)+1.

得y2+(2y′-x′2)y+y′2=0,
有y1+y2=x′2-2y′,y1y2=y′2,
∴|AF|·|BF|=y′2+x′2-2y′+1
=y′2+(y′+2)2-2y′+1
=22+,
當(dāng)y′=-,x′=時(shí),
即P時(shí),|AF|·|BF|取得最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖;.已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)MN.

(1)求橢圓C的方程;
(2)求的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線(xiàn)MPNP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn). 試問(wèn);是否存在使最大的點(diǎn)P,若存在求出P點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)拋物線(xiàn)的焦點(diǎn)為,點(diǎn),線(xiàn)段的中點(diǎn)在拋物線(xiàn)上. 設(shè)動(dòng)直線(xiàn)與拋物線(xiàn)相切于點(diǎn),且與拋物線(xiàn)的準(zhǔn)線(xiàn)相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過(guò)點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)作傾斜角為的直線(xiàn)交橢圓,兩點(diǎn), 到直線(xiàn)的距離為,連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過(guò)兩點(diǎn)的直線(xiàn)軸于點(diǎn),若, 求的取值范圍;
(3)作直線(xiàn)與橢圓交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線(xiàn)段垂直平分線(xiàn)上一點(diǎn),且滿(mǎn)足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點(diǎn)為A,離心率為,若不過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與橢圓C相交于P,Q兩點(diǎn),且·=0.

(1)求橢圓C的方程.
(2)求證:直線(xiàn)l過(guò)定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率相等. 直線(xiàn)與曲線(xiàn)交于兩點(diǎn)(的左側(cè)),與曲線(xiàn)交于兩點(diǎn)(的左側(cè)),為坐標(biāo)原點(diǎn),
(1)當(dāng)=,時(shí),求橢圓的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓過(guò)點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過(guò)點(diǎn)且斜率為的直線(xiàn)被橢圓所截得線(xiàn)段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線(xiàn)y=﹣x2上的點(diǎn)到直線(xiàn)4x+3y﹣8=0距離的最小值是(  )
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C=1(ab>0)的左、右焦點(diǎn)分別是F1、F2,離心率為,過(guò)F1且垂直于x軸的直線(xiàn)被橢圓C截得的線(xiàn)段長(zhǎng)為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),過(guò)點(diǎn)P作斜率為k的直線(xiàn)l,使得l與橢圓C有且只有一個(gè)公共點(diǎn).設(shè)直線(xiàn)PF1,PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案