在等腰直角△BCP中,BC=PC=4,∠BCP=90°,A是邊BP的中點,現(xiàn)沿CA把△ACP折起,使PB=4,如圖1所示.
(1)在三棱錐P-ABC中,求證:PA⊥平面ABC;
(2)在三棱錐P-ABC中,M,N,F(xiàn)分別是PC,BC,AC的中點,Q是MN上任意一點,求證:FQ∥平面PAB.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(1)根據(jù)線線垂直推出線面垂直;
(2)先證出面面平行再證出線面平行即可.
解答: 解:(1)在三棱錐P-ABC中,由題意得:PA⊥AC,
∵PA=AB=2
2
,PB=4,∴PA2+PB2=PB2,則PA⊥AB,
又AB∩AC=A,∴PA⊥平面ABC;
(2)如圖示:

∵M、N、F分別是PC、BC、AC的中點,連接FN、MF得平面FMN,
∴直線MN∥直線PB,直線FN∥直線AB,
又∵直線MN∩直線FN=你,直線PB∩直線AB=B,
∴平面PAB∥平面MNF,
又∵FQ?平面MNF,∴直線FQ∥平面PAB.
點評:本題考查了線線垂直,線面垂直,線面平行,面面平行的性質(zhì)及判定,本題屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第三象限的角,且cosα=-
5
5
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件:
2x+y≥4
x-y≥1
x-2y≤2
,則z=|x-3y|+5|y|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別是a,b,c,已知c=4,A=
π
3
,且函數(shù)f(x)=sinx+cosx的最大值為f(C),則△ABC的周長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C滿足A>B>C,其中B=60°,且sinA-sinC+
2
2
cos(A-C)=
2
2
,則A=
 
,C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
5x+3y≤15
y≤x+1
x-5y≤3
表示的平面區(qū)域的面積為( 。
A、14B、5C、3D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
xy>0
-2≤x+y≤2
則z=-2x+y的取值范圍是( 。
A、(-2,2)
B、[-4,4]
C、[-2,2]
D、(-4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinα,cosα),
b
=(-2,1)
,若
a
b
,則tanα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為8,則輸出S的值為( 。
A、4B、6C、7D、8

查看答案和解析>>

同步練習(xí)冊答案