精英家教網 > 高中數學 > 題目詳情

(10分)已知函數f(x)=2ax3+bx2­­­­­­-6x在x=1處取得極值

(1) 討論f(1)和f(-1)是函數f(x)的極大值還是極小值;

(2) 試求函數f(x)在x= - 2處的切線方程;

(3) 試求函數f(x)在區(qū)間[-3,2] 上的最值。

 

【答案】

f(x)=2x3-6x; 故f(1)= -4是極小值,f(-1)=4是極大

(2).切線方程是18x-y+32=0

   (3) .最大值為f(-1)=f(2)=4,  最小值為f(-3)=-36

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案