【題目】設(shè)數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項公式(不必證明).
(2)將數(shù)列依次按項、項、項、項、項循環(huán)地分為,,,,各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值.
(3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.
【答案】(1),,, (2)3012 (3)
【解析】
(1)求得,分別令,2,3,進而歸納出數(shù)列的通項公式;
(2)寫出幾個循環(huán)數(shù),可得每一次循環(huán)記為一組,由每一個循環(huán)含有5個括號,故是第20組中第5個括號內(nèi)的數(shù)之和,每一個循環(huán)中含有15個數(shù),20個循環(huán)具有300個數(shù),計算可得所求和;
(3)由題意可得原不等式即為對一切都成立,
設(shè),則只需,判斷數(shù)列的單調(diào)性,可得最大值,解不等式即可得到所求的范圍.
因為點在函數(shù)的圖象上,故
所以
令,得,所以;
令,得,所以;
令,得,所以;
由此猜想:.
因為,所以數(shù)列依次按項、項、項、項、項循環(huán)地分為,,,
每一次循環(huán)記為一組.由于每一個循環(huán)含有個括號,故是第組中第個括號內(nèi)各數(shù)之和,每個循環(huán)中有個數(shù),個循環(huán)共有個數(shù).
又,所以.
(3)因為故,
所以
又
故對一切都成立,
就是,則只需即可
由于,所以
故是單調(diào)遞減,
于是,解得.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體;在定義域內(nèi)存在實數(shù)t,使得.
(1)判斷是否屬于集合M,并說明理由;
(2)若屬于集合M,求實數(shù)a的取值范圍;
(3)若,求證:對任意實數(shù)b,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了2018年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工的月工資均在(百元)內(nèi),且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求的值;
(2)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名.
①完成如下所示列聯(lián)表
技術(shù)工 | 非技術(shù)工 | 總計 | |
月工資不高于平均數(shù) | |||
月工資高于平均數(shù) | |||
總計 |
②則能否在犯錯誤的概率不超過的前提下認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)對任意實數(shù),滿足:,且,,并且當時,.給出如下結(jié)論:①函數(shù)是偶函數(shù);②函數(shù)在上單調(diào)遞增;③函數(shù)是以2為周期的周期函數(shù);④.其中正確的結(jié)論是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線,圓,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)若直線的極坐標方程為,設(shè)的交點為A,B,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校理科實驗班的100名學生期中考試的語文、數(shù)學成績都不低于100分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:[100,110),[110,120),[120,130),[130,140),[140,150].
這100名學生語文成績某些分數(shù)段的人數(shù)與數(shù)學成績相應分數(shù)段的人數(shù)之比如下表所示:
分組區(qū)間 | [100,110) | [110,120) | [120,130) | [130,140) |
1:2 | 2:1 | 3:4 | 1:1 |
(1)估計這100名學生語文成績的平均數(shù)、方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)從數(shù)學成績在[130,150] 的學生中隨機選取2人,該2人中數(shù)學成績在[140,150]的人數(shù)為,求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過空間任一點與兩條異面直線都垂直的直線有且只有一條
D. 過球面上任意兩點的大圓有且只有一個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列都是由實數(shù)組成的無窮數(shù)列.
(1)若都是等差數(shù)列,判斷數(shù)列是否是等差數(shù)列,說明理由;
(2)若,且是等比數(shù)列,求的所有可能值;
(3)若都是等差數(shù)列,數(shù)列滿足,求證: 是等差數(shù)列的充要條件是: 中至少有一個是常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com