【題目】已知函數(shù)在點處的切線與y軸垂直.
(1)若,求的單調(diào)區(qū)間;
(2)若,成立,求a的取值范圍
【答案】(1)見解析;(2)
【解析】
(1)令f′(1)=0求出b,再根據(jù)f′(x)的符號得出f(x)的單調(diào)區(qū)間;
(2)分類討論,分別求出在(0,e)上的最小值,即可得出a的范圍.
(1),由題,
解得,由,得.
因為的定義域為,所以,
故當(dāng)時,, 為增函數(shù),
當(dāng)時,,為減函數(shù),
(2)由(1)知,
所以
(。┤,則由(1)知,即恒成立
(ⅱ)若,則且
故當(dāng)時,,為增函數(shù),
當(dāng)時,,為減函數(shù),
,即恒成立
(ⅲ)若,則且
故當(dāng)時,,為增函數(shù),
當(dāng)時,,為減函數(shù),
由題只需即可,即,解得,
而由,且,
得
(ⅳ)若,則,為增函數(shù),且,
所以,,不合題意,舍去;
(ⅴ)若,則,在上都為增函數(shù),且
所以,,不合題意,舍去;
綜上所述,a的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北省第二屆(荊州)園林博覽會于2019年9月28日至11月28日在荊州園博園舉辦,本屆園林博覽會以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來荊投資,從而促進荊州經(jīng)濟快速發(fā)展.在此博覽會期間,某公司帶來了一種智能設(shè)備供采購商洽談采購,并決定大量投放荊州市場.已知該種設(shè)備年固定研發(fā)成本為50萬元,每生產(chǎn)一臺需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備萬臺,且全部售完,且每萬臺的銷售收入(萬元)與年產(chǎn)量(萬臺)的函數(shù)關(guān)系式近似滿足
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬臺)的函數(shù)解析式.(年利潤年銷售收入總成本).
(2)當(dāng)年產(chǎn)量為多少萬臺時,該公司獲得的利潤最大?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于兩個定義域相同的函數(shù)、,若存在實數(shù)、使,則稱函數(shù)是由“基函數(shù)、”生成的.
(1)和生成一個偶函數(shù),求的值;
(2)若由,(且)生成,求的取值范圍;
(3)試利用“基函數(shù),”生成一個函數(shù),使滿足下列條件:①是偶函數(shù);②有最小值1,請求出函數(shù)的解析式并進一步研究該函數(shù)的單調(diào)性(無需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,、分別是、的中點,將三角形沿折起,則下列說法正確的是______________.
(1)不論折至何位置(不在平面內(nèi)),都有平面;
(2)不論折至何位置,都有;
(3)不論折至何位置(不在平面內(nèi)),都有;
(4)在折起過程中,一定存在某個位置,使.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一項自“一帶一路”沿線20國青年參與的評選中“高鐵”、“支付寶”、“共享單車”和“網(wǎng)購”被稱作中國“新四大發(fā)明”,曾以古代“四大發(fā)明”推動世界進步的中國,正再次以科技創(chuàng)新向世界展示自己的發(fā)展理念.某班假期分為四個社會實踐活動小組,分別對“新四大發(fā)明”對人們生活的影響進行調(diào)查.于開學(xué)進行交流報告會.四個小組隨機排序,則“支付寶”小組和“網(wǎng)購”小組不相鄰的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面,且為正三角形,,為的中點.
(1)求證:直線平面;
(2)求三棱錐的體積;
(3)三棱柱的頂點都在一個球面上,求該球的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com