【題目】經(jīng)市場調(diào)查,某種商品在進價基礎(chǔ)上每漲價1元,其銷售量就減少10個,已知這種商品進價為40/個,若按50元一個售出時能賣出500個.

1)請寫出售價x)元與利潤y元之間的函數(shù)關(guān)系式;

2)試計算當(dāng)售價定為多少元時,獲得的利潤最大,并求出最大利潤.

【答案】12)售價為70元時,利潤y元最大為9000元.

【解析】

1)可得該商品每個漲價()元,其銷售量將減少個.即有利潤;(2)利用函數(shù)的解析式,結(jié)合二次函數(shù)的性質(zhì)運用配方法,即可得到最大值及x的值.

解:(1)由售價為x元,可得該商品每個漲價元,

其銷售量將減少個.

即有利潤

=

=

2

=

當(dāng)時,y取得最大值,且為9000元.

故每個商品的售價為70元能夠使得利潤y元最大,利潤的最大值為9000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表:

(1)畫出散點圖;

(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;

(3)若該公司還有一個零售店某月銷售額為10千萬元,試估計它的利潤額是多少?

(參考公式:,其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 分別為內(nèi)角的對邊,且

(1)求角的大;

(2)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,討論函數(shù)零點的個數(shù);

(2)若,當(dāng)=1時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

1)記函數(shù)上的偶函數(shù)為事件,求事件的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進行理財投資根據(jù)長期收益率市場預(yù)測投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬元資金,全部用于理財投資問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學(xué)生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?

合計

110

50

合計

(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.

(Ⅰ)設(shè)對乙種產(chǎn)品投入資金(萬元),求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為4;

②若,則函數(shù)的最小值為3;

③若,滿足,則的最大值為;

④若,滿足,則的最小值為2;

⑤函數(shù)的最小值為9.

正確的________.(把你認(rèn)為正確的序號全部寫上)

查看答案和解析>>

同步練習(xí)冊答案