【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在進(jìn)價(jià)基礎(chǔ)上每漲價(jià)1元,其銷(xiāo)售量就減少10個(gè),已知這種商品進(jìn)價(jià)為40元/個(gè),若按50元一個(gè)售出時(shí)能賣(mài)出500個(gè).
(1)請(qǐng)寫(xiě)出售價(jià)x()元與利潤(rùn)y元之間的函數(shù)關(guān)系式;
(2)試計(jì)算當(dāng)售價(jià)定為多少元時(shí),獲得的利潤(rùn)最大,并求出最大利潤(rùn).
【答案】(1)(2)售價(jià)為70元時(shí),利潤(rùn)y元最大為9000元.
【解析】
(1)可得該商品每個(gè)漲價(jià)()元,其銷(xiāo)售量將減少個(gè).即有利潤(rùn);(2)利用函數(shù)的解析式,結(jié)合二次函數(shù)的性質(zhì)運(yùn)用配方法,即可得到最大值及x的值.
解:(1)由售價(jià)為x元,可得該商品每個(gè)漲價(jià)元,
其銷(xiāo)售量將減少個(gè).
即有利潤(rùn)
=
=
(2
=,
當(dāng)時(shí),y取得最大值,且為9000元.
故每個(gè)商品的售價(jià)為70元能夠使得利潤(rùn)y元最大,利潤(rùn)的最大值為9000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)額資料如下表:
(1)畫(huà)出散點(diǎn)圖;
(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤(rùn)額y與銷(xiāo)售額x之間的線性回歸方程;
(3)若該公司還有一個(gè)零售店某月銷(xiāo)售額為10千萬(wàn)元,試估計(jì)它的利潤(rùn)額是多少?
(參考公式:,其中:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),討論函數(shù)零點(diǎn)的個(gè)數(shù);
(2)若,當(dāng)=1時(shí),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)開(kāi)設(shè)甲、乙、丙三門(mén)選修課,學(xué)生是否選修哪門(mén)課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門(mén)的概率是0.88,用表示該學(xué)生選修的課程門(mén)數(shù)和沒(méi)有選修的課程門(mén)數(shù)的乘積.
(1)記“函數(shù)為上的偶函數(shù)”為事件,求事件的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類(lèi)產(chǎn)品的收益與投資額成正比,投資類(lèi)產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生喜歡校內(nèi)、校外開(kāi)展活動(dòng)的情況,某中學(xué)一課外活動(dòng)小組在學(xué)校高一年級(jí)進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱(chēng)為類(lèi)學(xué)生,低于60分的稱(chēng)為類(lèi)學(xué)生.
(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與是否為類(lèi)學(xué)生有關(guān)系?
類(lèi) | 類(lèi) | 合計(jì) | |
男 | 110 | ||
女 | 50 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類(lèi)學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有如下公式:,,今將200萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬(wàn)元.
(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬(wàn)元),求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:
①若,滿(mǎn)足,則的最大值為4;
②若,則函數(shù)的最小值為3;
③若,滿(mǎn)足,則的最大值為;
④若,滿(mǎn)足,則的最小值為2;
⑤函數(shù)的最小值為9.
正確的有________.(把你認(rèn)為正確的序號(hào)全部寫(xiě)上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com