記定義在R上的函數(shù)的導函數(shù)為.如果存在,使得成立,則稱為函數(shù)在區(qū)間上的“中值點”.那么函數(shù) 在區(qū)間[-2,2]上的“中值點”為____

試題分析:由求導可得,設為函數(shù)在區(qū)間[-2,2]上的“中值點”則,即解得.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調區(qū)間及的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處的切線與軸平行.
(1)求的值和函數(shù)的單調區(qū)間;
(2)若函數(shù)的圖象與拋物線恰有三個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),且在時函數(shù)取得極值.
(1)求的單調增區(qū)間;
(2)若
(Ⅰ)證明:當時,的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的定義域為區(qū)間.
(1)求函數(shù)的極大值與極小值;
(2)求函數(shù)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知實數(shù)函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調區(qū)間及最小值;
(Ⅱ)若對任意的恒成立,求實數(shù)的值;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=+3-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≥+ax+1在x≥時恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點處的切線方程為________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知M是曲線y=ln x+x2+(1-a)x上的一點,若曲線在M處的切線的傾斜角是均不小于的銳角,則實數(shù)a的取值范圍是________.

查看答案和解析>>

同步練習冊答案