“φ=
π
2
”是“cosφ=0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:當(dāng)φ=
π
2
時(shí),cosφ=0成立,充分性成立.
當(dāng)cosφ=0,則φ=
π
2
+kπ,k∈Z,則φ=
π
2
不一定成立,必要性不成立.
故“φ=
π
2
”是“cosφ=0”的充分不必要條件,
故選:A.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-x(-1≤x≤4,x∈Z)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“A<B”是“sin2A<sin2B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2sin43°-
3
sin13°
cos13°
=(  )
A、-
3
B、
3
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-2|<1的解集為( 。
A、[1,3]
B、(1,3)
C、[-3,-1]
D、(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)在[a,b]上連續(xù),將[a,b]n等分,在每個(gè)小區(qū)間上任取ξi,則
b
a
f(x)dx=(  )
A、
lim
n→∞
n
i=1
f(ξi
B、
lim
n→∞
n
i=1
f(ξi)•
b-a
n
C、
lim
n→∞
n
i=1
f(ξi)•ξi
D、
lim
n→∞
n
i=1
f(ξi)•(ξii-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)a1,a2,a3,a4是一個(gè)等差數(shù)列,且滿足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).給出以下命題:
①數(shù)列{bn}是等比數(shù)列;
②b2>4;
③b4>32;
④b2b4=256.
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C1:y=
1
2
ex關(guān)于直線y=x對(duì)稱得曲線C2,動(dòng)點(diǎn)P在C1上,動(dòng)點(diǎn)Q在C2上,則|PQ|最小值為( 。
A、1-ln2
B、
2
(1-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線Γ:y2=4x,直線l經(jīng)過點(diǎn)(0,2)且其一個(gè)方向向量為
d
=(1,k).
(1)若曲線Γ的焦點(diǎn)F在直線l上,求實(shí)數(shù)k的值;
(2)當(dāng)k=-1時(shí),直線l與曲線Γ相交于A、B兩點(diǎn),求|AB|的值;
(3)當(dāng)k(k>0)變化且直線l與曲線Γ有公共點(diǎn)時(shí),是否存在這樣的實(shí)數(shù)a,使得點(diǎn)P(a,0)關(guān)于直線l的對(duì)稱點(diǎn)Q(x0,y0)落在曲線Γ的準(zhǔn)線上.若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案