已知O是△ABC內(nèi)一點(diǎn),若
OA
+2
OB
+3
OC
=
0
,則△AOC與△ABC的面積的比值為(  )
A、
1
2
B、
1
5
C、
1
3
D、
2
3
考點(diǎn):向量加減混合運(yùn)算及其幾何意義
專題:平面向量及應(yīng)用
分析:
OA
+2
OB
+3
OC
=
0
變形為
OA
+3
OC
=-2
OB
.以
OA
、3
OC
所在的線段OA、OE為鄰邊作平行四邊形OAFE.
設(shè)對(duì)角線OF與AC交與點(diǎn)D.利用向量的平行四邊形法則和平行四邊形的性質(zhì)可得
OD
BD
=
1
3
.進(jìn)而得出.
解答: 解:如圖所示,
OA
+2
OB
+3
OC
=
0
變形為
OA
+3
OC
=-2
OB

OA
3
OC
所在的線段OA、OE為鄰邊作平行四邊形OAFE.
設(shè)對(duì)角線OF與AC交與點(diǎn)D.
OF
=-2
OB

OD
DF
=
OC
AF
=
1
3
,
OD
2OB-OD
=
1
3
,化為
OD
OB
=
1
2
,即
OD
BD
=
1
3

∴△AOC與△ABC的面積的比值=
1
3

故選:C.
點(diǎn)評(píng):本題考查了向量的平行四邊形法則和平行四邊形的性質(zhì),考查了作輔助線的重要性和技巧,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程x2-2x-m=0在-1≤x≤1上有解,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足(1+i)z=1+2i(其中i是虛數(shù)單位),則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)是奇函數(shù)的是( 。
A、f(x)=-|x|
B、f(x)=lg(1+x)-lg(1-x)
C、f(x)=2x+2-x
D、f(x)=x3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體的棱長(zhǎng)為1,線段B′D′上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),EF=
1
2
,則下列結(jié)論中錯(cuò)誤的是( 。
A、AC⊥BE
B、EF∥平面ABCD
C、三棱錐A-BEF的體積為定值
D、異面直線AE,BF所成角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不同的直線l,m,不同的平面α,β,下命題中:
①若α∥β,l?α,則l∥β   
②若α∥β,l⊥α,則l⊥β
③若l∥α,m?α,則l∥m   
④若α⊥β,α∩β=l,m⊥l
則真命題的個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M、拋物線N的焦點(diǎn)均在x軸上的,且M的中心和M的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求M,N的標(biāo)準(zhǔn)方程;
(Ⅱ)已知定點(diǎn)A(1,
1
2
),過原點(diǎn)O作直線l交橢圓M于B,C兩點(diǎn),求△ABC面積的最大值和此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A1B1C1中,∠ACB=
π
2
.AC=CB=AA1=2,E為BB1的中點(diǎn),D在AB上,且∠A1DE=
π
2

(Ⅰ)求證:CD⊥面ABB1A1
(Ⅱ)求二面角D-A1C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),
    ①比較g(x)與g(
1
x
)
的大;
    ②是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案