【題目】隨著社會經濟高速發(fā)展,人民的生活水平越來越高,部分學校安裝了中央空調,某校數學建模隊調查了某品牌中央空調,得到該設備使用年限x(單位:年)和維修總費用y(單位:萬元)的統(tǒng)計表如下:(每年年底維修保養(yǎng))
使用年限x(單位:年) | 2 | 3 | 4 | 5 | 6 |
維修總費用y(單位:萬元) | 1 | 3 | 4 |
由上表可得線性回歸方程,則根據此模型預報該品牌中央空調第8年年底的維修費用約為( )
A.萬元B.萬元C.萬元D.萬元
科目:高中數學 來源: 題型:
【題目】某市場研究人員為了了解產業(yè)園引進的甲公司前期的經營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據得到的數據繪制了相應的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;
(2)甲公司新研制了一款產品,需要采購一批新型材料,現有,兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不相同,現對,兩種型號的新型材料對應的產品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數統(tǒng)計如下表:
使用壽命 材料類型 | 個月 | 個月 | 個月 | 個月 | 總計 |
如果你是甲公司的負責人,你會選擇采購哪款新型材料?
參考數據:,.參考公式:回歸直線方程為,其中 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,曲線的參數方程為(α為參數).設曲線與x軸、y軸的交點分別為A,B,線段的中點為M,射線與曲線交于點N.
(1)求曲線的普通方程與曲線的極坐標方程;
(2)求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中將底面為直角三角形且側棱垂直于底面的三棱柱稱為“塹堵”;底面為矩形,一條側棱垂直于底面的四棱錐稱之為“陽馬”;四個面均為直角三角形的四面體稱為“鱉膈”.如圖在塹堵ABC-A1B1C1中,AC⊥BC,且AA1=AB=2.下列說法正確的是( )
A.四棱錐B-A1ACC1為“陽馬”
B.四面體A1C1CB為“鱉膈”
C.四棱錐B-A1ACC1體積最大為
D.過A點分別作AE⊥A1B于點E,AF⊥A1C于點F,則EF⊥A1B
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
【答案】C
【解析】設球半徑為R,圓柱的體積為時圓柱的體積最大為 ,因此材料利用率= ,選C.
點睛:空間幾何體與球接、切問題的求解方法
求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關系求解.
【題型】單選題
【結束】
12
【題目】已知拋物線: 在點處的切線與曲線: 相切,若動直線分別與曲線、相交于、兩點,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,拋物線C:的焦點到直線l:的距離為.
(1)求m的值.
(2)如圖,已知拋物線C的動弦的中點M在直線l上,過點M且平行于x軸的直線與拋物線C相交于點N,求面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com