【題目】某種商品原來每件售價為25元,年銷售量8萬件.

(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

【答案】1)每件定價最多為元;(2)當(dāng)該商品明年的銷售量至少達(dá)到萬件時,才可能使明年的銷售收入不低于原收入與總收入之和,此時該商品的每件定價為元.

【解析】

(1)設(shè)出每件的定價,根據(jù)“銷售的總收入不低于原收入”列不等式,解不等式求得定價的取值范圍,由此求得定價的最大值.(2)利用題目所求“改革后的銷售收入不低于原收入與總投入之和”列出不等式,將不等式分離常數(shù),然后利用基本不等式求得的取值范圍以及此時商品的每件定價.

解:(1)設(shè)每件定價為元,

依題意得,

整理得,

解得

所以要使銷售的總收入不低于原收入,每件定價最多為40元.

(2)依題意知當(dāng)時,不等式有解

等價于時,有解,

由于,

當(dāng)且僅當(dāng),即時等號成立,

所以

當(dāng)該商品改革后銷售量至少達(dá)到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

(Ⅰ)若,求的值;

(Ⅱ)求函數(shù)在區(qū)間上的最小值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1),。

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對任意xx,xx,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某種書籍的成本費(fèi)(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中.

為了預(yù)測印刷20千冊時每冊的成本費(fèi),建立了兩個回歸模型:.

(1)根據(jù)散點(diǎn)圖,擬認(rèn)為選擇哪個模型預(yù)測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時每冊的成本費(fèi).

附:對于一組數(shù)據(jù),其回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計(jì),數(shù)據(jù)如下表:

分?jǐn)?shù)段

0~39

40~49

50~59

60~69

70~79

80~89

90~100

午休考生人數(shù)

29

34

37

29

23

18

10

不午休考生人數(shù)

20

52

68

30

15

12

3

(1)根據(jù)上述表格完成下列列聯(lián)表:

及格人數(shù)

不及格人數(shù)

合計(jì)

午休

不午休

合計(jì)

(2)判斷“能否在犯錯誤的概率不超過0.010的前提下認(rèn)為成績及格與午休有關(guān)”?

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)

1)寫出該函數(shù)的頂點(diǎn)坐標(biāo);

2)如果該函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=sin+cos,x∈R

1)求函數(shù)fx)的最小正周期,并求函數(shù)fx)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;

2)函數(shù)fx=sinxx∈R)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到函數(shù)fx)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四面體的六條棱的長分別為1,1,1,1, 和a,且長為a的棱與長為 的棱異面,則a的取值范圍是(
A.(0,
B.(0,
C.(1,
D.(1,

查看答案和解析>>

同步練習(xí)冊答案