【題目】某港口某天0時至24時的水深(米)隨時間(時)變化曲線近似滿足如下函數(shù)模型.若該港口在該天0時至24時內(nèi),有且只有3個時刻水深為3米,則該港口該天水最深的時刻不可能為(

A.16B.17C.18D.19

【答案】D

【解析】

本題是單選題,利用回代驗證法,結合五點法作圖以及函數(shù)的最值的位置,判斷即可.

解:由題意可知,時,,

由五點法作圖可知:如果當時,函數(shù)取得最小值可得:,可得

此時函數(shù),函數(shù)的周期為:

該港口在該天0時至24時內(nèi),有且只有3個時刻水深為3米,滿足,

如果當時,函數(shù)取得最小值可得:,可得

此時函數(shù),函數(shù)的周期為:,

時,,如圖:

該港口在該天0時至24時內(nèi),有且只有3個時刻水深為3米,不滿足,

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是國家統(tǒng)計局今年411日發(fā)布的20183月到20193月全國居民消費價格的漲跌幅情況折線圖.(注:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比),根據(jù)該折線圖,下列結論錯誤的是(

A.20183月至20193月全國居民消費價格同比均上漲

B.20183月至20193月全國居民消費價格環(huán)比有漲有跌

C.20193月全國居民消費價格同比漲幅最大

D.20193月全國居民消費價格環(huán)比變化最快

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩座建筑物,的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是,從建筑物的頂部看建筑物的視角

1)求的長度;

2)在線段上取一點(點與點,不重合),從點看這兩座建筑物的視角分別為,,問點在何處時,最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P是拋物線Ey24x上的動點,F是拋物線E的焦點.

1)求|PF|的最小值;

2)點B,Cy軸上,直線PBPC與圓(x12+y21相切.當|PF|[4,6]時,求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是等差數(shù)列,公差為,前項和為.

1)設,,求的最大值.

2)設,,數(shù)列的前項和為,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表列出了1058歲兒童的體重x(單位kg)(這是容易測得的)和體積y(單位dm3)(這是難以測得的),繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合yx的關系:

體重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

體積y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y關于x的線性回歸方程(系數(shù)精確到0.01);

(2)5歲兒童的體重為13.00kg,估測此兒童的體積.

附注:參考數(shù)據(jù):,,

,,137×14=1918.00

參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側,其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,an>0 (nN ),公比q(0,1)a1a5+2a3a5a2a8=25,又a3a5的等比中項為2.

(1) 求數(shù)列{an}的通項公式;

(2) ,數(shù)列{bn}的前n項和為Sn,當最大時,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年國慶黃金周影市火爆依舊,《我和我的祖國》、《中國機長》、《攀登者》票房不斷刷新,為了解我校高三2300名學生的觀影情況,隨機調(diào)查了100名在校學生,其中看過《我和我的祖國》或《中國機長》的學生共有80位,看過《中國機長》的學生共有60位,看過《中國機長》且看過《我和我的祖國》的學生共有50位,則該校高三年級看過《我和我的祖國》的學生人數(shù)的估計值為( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

同步練習冊答案