極坐標(biāo)方程p=cosθ化為直角坐標(biāo)方程是
 
考點(diǎn):點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化
專題:計(jì)算題
分析:先將原極坐標(biāo)方程ρ=cosθ兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行判斷.
解答: 解:將原極坐標(biāo)方程ρ=cosθ,化為:
ρ2=ρcosθ,
化成直角坐標(biāo)方程為:x2+y2-x=0,
即(x-
1
2
2+y2=
1
4

故答案為:(x-
1
2
2+y2=
1
4
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>c,下列不等式成立的是(  )
A、-a>-b
B、a+c<b+c
C、2a>2b
D、
1
a
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=log2(x-2)+3的圖象按向量
a
平移,得到函數(shù)y=log2(x+1)-1的圖象,則
a
等于( 。
A、(-3,-4)
B、(3,4)
C、(-3,4)
D、(3,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn).設(shè)正方體的棱長為2a.
(1)求AD和B1C所成的角;
(2)證明:平面EB1D⊥平面B1CD;
(3)求二面角E-B1C-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=
3
x
被圓x2+y2-2x=0所截得的弦長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在球O內(nèi)任取一點(diǎn)P,則P點(diǎn)在球O的內(nèi)接正四面體中的概率是( 。
A、
1
12π
B、
3
12π
C、
2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸上,且過點(diǎn)(2,1).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l:y=kx+t,與圓x2+(y+1)2=1相切且與拋物線交于不同的兩點(diǎn)M,N,當(dāng)∠MON為鈍角時(shí),有S△MON=48成立?若存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2-4x=0,直線l與x,y軸的交點(diǎn)坐標(biāo)分別為(
1
3
,0)和(0,-
1
4
),則直線l截圓C所得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等x|x|<x的解集是( 。
A、{x|0<x<1}
B、{x|-1<x<1}
C、{x|0<x<1}或{x|x<-1},
D、{x|-1<x<0,x>1}

查看答案和解析>>

同步練習(xí)冊答案