7.在△ABC中,a,b,c分別為角A、B、C所對(duì)的邊,且滿足3=b2-c2,又sinBcosC=2cosBsinC,則邊長(zhǎng)a的值為3.

分析 利用正弦定理,余弦定理化簡(jiǎn)已知等式可得3b2=a2+3c2,聯(lián)立3=b2-c2,即可解得a的值.

解答 解:∵sinBcosC=2cosBsinC,
∴由正弦定理可得:bcosC=2ccosB,
結(jié)合余弦定理可得:b•$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=2c•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
∴整理可得:3b2=a2+3c2,
又∵3=b2-c2,
∴聯(lián)立解得:a2=9,即a=3.
故答案為:3.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù).

(1)若,求函數(shù)處切線方程;

(2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)集合,,則等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

觀察下列散點(diǎn)圖,其中兩個(gè)變量的相關(guān)關(guān)系判斷正確的是( )

A. 為正相關(guān), 為負(fù)相關(guān), 為不相關(guān)

B. 為負(fù)相關(guān), 為不相關(guān), 為正相關(guān)

C. 為負(fù)相關(guān), 為正相關(guān), 為不相關(guān)

D. 為正相關(guān), 為不相關(guān), 為負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓E的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)($\sqrt{2},-\frac{\sqrt{2}}{2}$)與(1,$\frac{\sqrt{3}}{2}$)兩點(diǎn).
(Ⅰ)求E的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0,m>0)與E交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.對(duì)部分4G手機(jī)用戶每日使用流量(單位:M)進(jìn)行統(tǒng)計(jì),得到如下記錄:
流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.250.300.250.150
將手機(jī)日使用的流量統(tǒng)計(jì)到各組的頻率視為概率,并假設(shè)每天手機(jī)的日流量相互獨(dú)立.
(Ⅰ)求某人在未來(lái)連續(xù)4天里,有連續(xù)3天的手機(jī)的日使用流量都不低于15M且另1天的手機(jī)日使用流量低于5M的概率;
(Ⅱ)用X表示某人在未來(lái)3天時(shí)間里手機(jī)日使用流量不低于15M的天數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{1}{x}$+ax+b,a,b∈R.
(1)若函數(shù)y=f(x)-2是奇函數(shù),且在(0,+∞)上的最小值為4,求函數(shù)f(x)的解析式;
(2)當(dāng)a=1時(shí),函數(shù)g(x)=2f(x)-x在[$\frac{1}{2}$,2]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)b的最小值;
(3)設(shè)F(x)=|f(x)|,對(duì)任意的實(shí)數(shù)b,都存在實(shí)數(shù)x0∈[$\frac{1}{2}$,2],使得F(x)$≥\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M到定直線y=1的距離等于d,并且滿足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$為非負(fù)實(shí)數(shù)
(1)求動(dòng)點(diǎn)M的軌跡C1的方程
(2)若將曲線C1向左平移一個(gè)單位得到曲線C2,試指出C2為何種類型的曲線;
(3)若0<k<1,F(xiàn)1、F2是(2)中曲線C2的兩個(gè)焦點(diǎn),當(dāng)點(diǎn)P在C2上運(yùn)動(dòng)時(shí),求∠F1PF2取得最大值時(shí)對(duì)應(yīng)點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,點(diǎn)P是橢圓上任意一點(diǎn),F(xiàn)1、F2分別是橢圓的左右焦點(diǎn),△PF1F2的面積最大值為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)從圓x2+y2=16上一點(diǎn)P向橢圓C引兩條切線,切點(diǎn)分別為A,B,當(dāng)直線AB分別與x軸、y軸交于M、N兩點(diǎn)時(shí),求|MN|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案