分析 (Ⅰ)由題意可知:設(shè)橢圓E的標(biāo)準(zhǔn)方程:mx2+ny2=1(m>0,n>0),將($\sqrt{2},-\frac{\sqrt{2}}{2}$)與(1,$\frac{\sqrt{3}}{2}$)兩點(diǎn),代入橢圓方程,即可求得m和n的值,求得橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)將直線方程代入橢圓方程,由△>0,求得4k2+1-m2>0 ①,根據(jù)韋達(dá)定理及中點(diǎn)坐標(biāo)公式,則$\frac{{y}_{0}-0}{{x}_{0}-(-1)}$=-$\frac{1}{k}$,整理得3km=4k2+1,即可求得
k>$\frac{\sqrt{5}}{5}$,則丨PQ丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$,O到直線l的距離為d=$\frac{m}{\sqrt{1+{k}^{2}}}$,則三角形△OPQ面積S△OPQ=$\frac{1}{2}$•d•丨PQ丨=$\frac{2\sqrt{20+\frac{1}{{k}^{2}}-\frac{1}{{k}^{4}}}}{9}$,由二次函數(shù)的性質(zhì)即可求得△OPQ面積的最大值及此時(shí)直線l的方程..
解答 解:(Ⅰ)由題意可知:設(shè)橢圓E的標(biāo)準(zhǔn)方程:mx2+ny2=1(m>0,n>0),由橢圓經(jīng)過($\sqrt{2},-\frac{\sqrt{2}}{2}$)與(1,$\frac{\sqrt{3}}{2}$)兩點(diǎn),
$\left\{\begin{array}{l}{2m+\frac{1}{2}=1}\\{m+\frac{3}{4}n=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{m=\frac{1}{4}}\\{n=1}\end{array}\right.$,
∴橢圓E的方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),PQ的中點(diǎn)為E(x0,y0)
則 $\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得:(1+4k2)x2+8kmx+4m2-4=0,
∵△=16(4k2+1-m2 )>0,即 4k2+1-m2>0 ①,
韋達(dá)定理可知:x1+x2=$\frac{-8km}{1+4{k}^{2}}$,x1•x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
由中點(diǎn)坐標(biāo)公式可知:x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-4km}{1+4{k}^{2}}$,y0=kx0+m=$\frac{m}{1+4{k}^{2}}$,
由弦長公式可知:丨PQ丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{(-\frac{8km}{1+4{k}^{2}})^{2}-4×\frac{4{m}^{2}-4}{1+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$,
又點(diǎn)[-1,0]不在橢圓OE上.
依題意有 $\frac{{y}_{0}-0}{{x}_{0}-(-1)}$=-$\frac{1}{k}$,整理得3km=4k2+1 ②.
由①②可得k2>$\frac{1}{5}$,
∵m>0,∴k>0,
∴k>$\frac{\sqrt{5}}{5}$,
設(shè)O到直線l的距離為d=$\frac{m}{\sqrt{1+{k}^{2}}}$,
則S△OPQ=$\frac{1}{2}$•d•丨PQ丨=$\frac{1}{2}$•$\frac{m}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$=$\frac{2\sqrt{(4{k}^{2}+1)(5{k}^{2}-1)}}{9{k}^{2}}$=$\frac{2\sqrt{20+\frac{1}{{k}^{2}}-\frac{1}{{k}^{4}}}}{9}$.
當(dāng) $\frac{1}{{k}^{2}}$=$\frac{1}{2}$時(shí),OPQ 的面積取最大值1,此時(shí)k=$\sqrt{2}$,m=$\frac{3\sqrt{2}}{2}$,
∴直線方程為 y=$\sqrt{2}$x+$\frac{3\sqrt{2}}{2}$.
點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理點(diǎn)到直線的距離公式,中點(diǎn)坐標(biāo)及三角形面積公式與二次函數(shù)的性質(zhì)的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
冪函數(shù)的圖象經(jīng)過點(diǎn),則( )
A.2 B.4
C.8 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知向量與向量平行,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
設(shè)數(shù)列的前項(xiàng)和,若,且,則等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
為了了解某學(xué)校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,據(jù)此估計(jì)該校高中男生體重在的人數(shù)為( )
A.360 B.336 C.300 D.280
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com