【題目】(本小題滿分10分) 選修4-4:極坐標系與參數(shù)方程

在極坐標系中曲線的極坐標方程為,點.以極點為原點,以極軸為軸正半軸建立直角坐標系.斜率為的直線過點,且與曲線交于兩點.

)求出曲線的直角坐標方程和直線的參數(shù)方程;

)求點到兩點的距離之積.

【答案】1,;(22

【解析】試題分析:(1)對兩邊乘以,可得曲線的直角坐標方程為,按照直線參數(shù)方程的概念,有直線的參數(shù)方程為;(2)聯(lián)立直線的方程和拋物線的方程,得,根據(jù)根與系數(shù)關(guān)系,有.

試題解析:

1, ,由

所以,即為曲線C的直角坐標方程;點M的直角坐標為,

直線l的傾斜角為故直線l的參數(shù)方程為

t為參數(shù))即t為參數(shù))

2)把直線l的參數(shù)方程t為參數(shù))代入曲線C的方程得

,即,

設(shè)A、B對應(yīng)的參數(shù)分別為,則

又直線l經(jīng)過點M,故由t的幾何意義得

MAB兩點的距離之積

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在R上定義運算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),則a+b的值為(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) (x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)當﹣1≤t≤1時,要使關(guān)于t的方程g(t)=kt有且僅有一個實根,求實數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某貨輪勻速行駛在相距300海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其它費用組成,已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數(shù)為0.5),其它費用為每小時800元,且該貨輪的最大航行速度為50海里/小時.
(1)請將從甲地到乙地的運輸成本y(元)表示為航行速度x(海里/小時)的函數(shù);
(2)要使從甲地到乙地的運輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題是真命題的為(
A.若x2=1,則x=1
B.若x=y,則
C.若x<y,則x2<y2
D.若 ,則x=y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3 (m+3)x2+(m+6)x,x∈R.(其中m為常數(shù))
(1)當m=4時,求函數(shù)的極值點和極值;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有兩個極值點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x+ )+1,△ABC中,角A、B、C的對邊分別是a、b、c.
(1)若角A、B、C成等差數(shù)列,求f(B)的值;
(2)若f( )= ,邊a、b、c成等比數(shù)列,△ABC的面積S= ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點P(0,﹣1)是橢圓C1 =1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1 , l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A,B兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}滿足2a1+a3=3a2 , 且a3+2是a2 , a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an+log2 ,Sn=b1+b2+…bn , 求使 Sn﹣2n+1+47<0 成立的正整數(shù)n的最小值.

查看答案和解析>>

同步練習冊答案